make a/b tester
Browse files
app.py
CHANGED
|
@@ -4,8 +4,8 @@
|
|
| 4 |
# in the Software without restriction, including without limitation the rights
|
| 5 |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 6 |
# copies of the Software, and to permit persons to whom the Software is
|
| 7 |
-
|
| 8 |
import spaces
|
|
|
|
| 9 |
import os
|
| 10 |
import random
|
| 11 |
import uuid
|
|
@@ -13,17 +13,37 @@ import gradio as gr
|
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
import torch
|
| 16 |
-
from diffusers import StableDiffusionXLPipeline,
|
|
|
|
|
|
|
|
|
|
| 17 |
from typing import Tuple
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
DESCRIPTIONXX = """
|
| 29 |
## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
|
|
@@ -41,10 +61,10 @@ MODEL_OPTIONS = {
|
|
| 41 |
|
| 42 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 43 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 44 |
-
ENABLE_CPU_OFFLOAD =
|
| 45 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 46 |
|
| 47 |
-
device = "cpu"
|
| 48 |
|
| 49 |
style_list = [
|
| 50 |
{
|
|
@@ -72,34 +92,92 @@ style_list = [
|
|
| 72 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 73 |
DEFAULT_STYLE_NAME = "Style Zero"
|
| 74 |
STYLE_NAMES = list(styles.keys())
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
| 77 |
if style_name in styles:
|
| 78 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 79 |
else:
|
| 80 |
p, n = styles[DEFAULT_STYLE_NAME]
|
| 81 |
-
|
| 82 |
if not negative:
|
| 83 |
negative = ""
|
| 84 |
return p.replace("{prompt}", positive), n + negative
|
| 85 |
|
| 86 |
def load_and_prepare_model(model_id):
|
| 87 |
-
model_dtypes = {
|
| 88 |
-
"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,
|
| 89 |
-
}
|
| 90 |
-
|
| 91 |
-
# Get the dtype based on the model_id
|
| 92 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 93 |
-
|
| 94 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 99 |
add_watermarker=False,
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
return pipe
|
| 104 |
|
| 105 |
# Preload and compile both models
|
|
@@ -107,9 +185,24 @@ models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.ite
|
|
| 107 |
|
| 108 |
MAX_SEED = np.iinfo(np.int32).max
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
def save_image(img):
|
| 111 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 112 |
-
img.save(unique_name)
|
| 113 |
return unique_name
|
| 114 |
|
| 115 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
@@ -117,54 +210,211 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 117 |
seed = random.randint(0, MAX_SEED)
|
| 118 |
return seed
|
| 119 |
|
| 120 |
-
@spaces.GPU(duration=
|
| 121 |
-
def
|
| 122 |
model_choice: str,
|
| 123 |
prompt: str,
|
| 124 |
negative_prompt: str = "",
|
| 125 |
use_negative_prompt: bool = False,
|
| 126 |
-
style_selection: str =
|
| 127 |
seed: int = 1,
|
| 128 |
width: int = 768,
|
| 129 |
height: int = 768,
|
| 130 |
guidance_scale: float = 4,
|
| 131 |
-
num_inference_steps: int =
|
| 132 |
randomize_seed: bool = False,
|
| 133 |
use_resolution_binning: bool = True,
|
| 134 |
num_images: int = 1,
|
| 135 |
-
progress=gr.Progress(track_tqdm=True)
|
| 136 |
):
|
|
|
|
|
|
|
| 137 |
global models
|
| 138 |
pipe = models[model_choice]
|
| 139 |
-
|
| 140 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 141 |
-
generator = torch.Generator(device=
|
| 142 |
-
|
| 143 |
-
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
| 144 |
-
|
| 145 |
options = {
|
| 146 |
"prompt": [prompt] * num_images,
|
| 147 |
-
"negative_prompt": [negative_prompt]
|
|
|
|
| 148 |
"width": width,
|
| 149 |
"height": height,
|
| 150 |
"guidance_scale": guidance_scale,
|
| 151 |
"num_inference_steps": num_inference_steps,
|
| 152 |
"generator": generator,
|
|
|
|
| 153 |
"output_type": "pil",
|
| 154 |
}
|
| 155 |
-
|
| 156 |
if use_resolution_binning:
|
| 157 |
options["use_resolution_binning"] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
images = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
for i in range(0, num_images, BATCH_SIZE):
|
| 161 |
batch_options = options.copy()
|
| 162 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 163 |
if "negative_prompt" in batch_options:
|
| 164 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 165 |
images.extend(pipe(**batch_options).images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
image_paths = [save_image(img) for img in images]
|
|
|
|
|
|
|
| 168 |
return image_paths, seed
|
| 169 |
|
| 170 |
def load_predefined_images1():
|
|
@@ -181,23 +431,21 @@ def load_predefined_images1():
|
|
| 181 |
]
|
| 182 |
return predefined_images1
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
|
| 186 |
-
# predefined_images = [
|
| 187 |
-
# "assets2/11.png",
|
| 188 |
-
# "assets2/22.png",
|
| 189 |
-
# "assets2/33.png",
|
| 190 |
-
# "assets2/44.png",
|
| 191 |
-
# "assets2/55.png",
|
| 192 |
-
# "assets2/66.png",
|
| 193 |
-
# "assets2/77.png",
|
| 194 |
-
# "assets2/88.png",
|
| 195 |
-
# "assets2/99.png",
|
| 196 |
-
# ]
|
| 197 |
-
# return predefined_image
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
| 201 |
gr.Markdown(DESCRIPTIONXX)
|
| 202 |
with gr.Row():
|
| 203 |
prompt = gr.Text(
|
|
@@ -207,7 +455,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 207 |
placeholder="Enter your prompt",
|
| 208 |
container=False,
|
| 209 |
)
|
| 210 |
-
|
|
|
|
|
|
|
| 211 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
| 212 |
|
| 213 |
with gr.Row():
|
|
@@ -217,7 +467,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 217 |
value="REALVISXL V5.0 BF16"
|
| 218 |
)
|
| 219 |
|
| 220 |
-
with gr.Accordion("Advanced options", open=False, visible=True):
|
| 221 |
style_selection = gr.Radio(
|
| 222 |
show_label=True,
|
| 223 |
container=True,
|
|
@@ -241,7 +490,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 241 |
max_lines=5,
|
| 242 |
lines=4,
|
| 243 |
placeholder="Enter a negative prompt",
|
| 244 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs,
|
| 245 |
visible=True,
|
| 246 |
)
|
| 247 |
seed = gr.Slider(
|
|
@@ -271,9 +520,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 271 |
guidance_scale = gr.Slider(
|
| 272 |
label="Guidance Scale",
|
| 273 |
minimum=0.1,
|
| 274 |
-
maximum=
|
| 275 |
step=0.1,
|
| 276 |
-
value=4
|
| 277 |
)
|
| 278 |
num_inference_steps = gr.Slider(
|
| 279 |
label="Number of inference steps",
|
|
@@ -298,12 +547,56 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 298 |
|
| 299 |
gr.on(
|
| 300 |
triggers=[
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
],
|
| 305 |
-
|
| 306 |
-
fn=
|
| 307 |
inputs=[
|
| 308 |
model_choice,
|
| 309 |
prompt,
|
|
@@ -368,7 +661,6 @@ if __name__ == "__main__":
|
|
| 368 |
outputs=gr.Textbox(label="Text Generated"),
|
| 369 |
title=title,
|
| 370 |
description=description,
|
| 371 |
-
theme="huggingface"
|
| 372 |
)
|
| 373 |
|
| 374 |
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
|
|
|
|
| 4 |
# in the Software without restriction, including without limitation the rights
|
| 5 |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 6 |
# copies of the Software, and to permit persons to whom the Software is
|
|
|
|
| 7 |
import spaces
|
| 8 |
+
|
| 9 |
import os
|
| 10 |
import random
|
| 11 |
import uuid
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
import torch
|
| 16 |
+
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
|
| 17 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
| 18 |
+
from diffusers import DPMSolverMultistepScheduler
|
| 19 |
+
|
| 20 |
from typing import Tuple
|
| 21 |
+
import paramiko
|
| 22 |
+
import gc
|
| 23 |
+
import time
|
| 24 |
+
import datetime
|
| 25 |
+
#from diffusers.schedulers import AysSchedules
|
| 26 |
|
| 27 |
+
from gradio import themes
|
| 28 |
+
from hidiffusion import apply_hidiffusion, remove_hidiffusion
|
| 29 |
+
|
| 30 |
+
import gc
|
| 31 |
+
|
| 32 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
| 33 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
| 34 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
| 35 |
+
torch.backends.cudnn.allow_tf32 = False
|
| 36 |
+
torch.backends.cudnn.deterministic = False
|
| 37 |
+
#torch.backends.cudnn.benchmark = False
|
| 38 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
| 39 |
+
# torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 40 |
+
|
| 41 |
+
torch.set_float32_matmul_precision("highest")
|
| 42 |
+
|
| 43 |
+
FTP_HOST = "1ink.us"
|
| 44 |
+
FTP_USER = "ford442"
|
| 45 |
+
FTP_PASS = "GoogleBez12!"
|
| 46 |
+
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 47 |
|
| 48 |
DESCRIPTIONXX = """
|
| 49 |
## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
|
|
|
|
| 61 |
|
| 62 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 63 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 64 |
+
ENABLE_CPU_OFFLOAD = 0
|
| 65 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 66 |
|
| 67 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 68 |
|
| 69 |
style_list = [
|
| 70 |
{
|
|
|
|
| 92 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
| 93 |
DEFAULT_STYLE_NAME = "Style Zero"
|
| 94 |
STYLE_NAMES = list(styles.keys())
|
| 95 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 96 |
+
|
| 97 |
+
#sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
|
| 98 |
|
| 99 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
| 100 |
if style_name in styles:
|
| 101 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 102 |
else:
|
| 103 |
p, n = styles[DEFAULT_STYLE_NAME]
|
|
|
|
| 104 |
if not negative:
|
| 105 |
negative = ""
|
| 106 |
return p.replace("{prompt}", positive), n + negative
|
| 107 |
|
| 108 |
def load_and_prepare_model(model_id):
|
| 109 |
+
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 111 |
+
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
| 112 |
+
#vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
|
| 113 |
+
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 114 |
+
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 115 |
+
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
| 116 |
+
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 117 |
+
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 118 |
+
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 119 |
+
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 120 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 121 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
| 122 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
| 123 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler')
|
| 124 |
+
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
| 125 |
+
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
| 126 |
+
|
| 127 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 128 |
+
#'ford442/RealVisXL_V5.0_BF16',
|
| 129 |
+
# 'ford442/Juggernaut-XI-v11-fp32',
|
| 130 |
+
'SG161222/RealVisXL_V5.0',
|
| 131 |
+
#torch_dtype=torch.bfloat16,
|
| 132 |
add_watermarker=False,
|
| 133 |
+
# custom_pipeline="lpw_stable_diffusion_xl",
|
| 134 |
+
#use_safetensors=True,
|
| 135 |
+
# use_auth_token=HF_TOKEN,
|
| 136 |
+
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
|
| 137 |
+
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
|
| 138 |
+
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
|
| 139 |
+
#vae=vae,
|
| 140 |
+
#unet=pipeX.unet,
|
| 141 |
+
#scheduler = sched,
|
| 142 |
+
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 143 |
+
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
| 147 |
+
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 148 |
+
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
| 149 |
+
#pipe.vae = vaeX
|
| 150 |
+
#pipe.unet = unetX
|
| 151 |
+
#pipe.vae.do_resize=False
|
| 152 |
+
pipe.scheduler = sched
|
| 153 |
+
#pipe.vae=vae.to(torch.bfloat16)
|
| 154 |
+
#pipe.unet=pipeX.unet
|
| 155 |
+
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 156 |
+
|
| 157 |
+
pipe.to(device)
|
| 158 |
+
pipe.to(torch.bfloat16)
|
| 159 |
+
|
| 160 |
+
apply_hidiffusion(pipe)
|
| 161 |
|
| 162 |
+
#pipe.unet.set_default_attn_processor()
|
| 163 |
+
#pipe.vae.set_default_attn_processor()
|
| 164 |
+
|
| 165 |
+
print(f'Pipeline: ')
|
| 166 |
+
print(f'_optional_components: {pipe._optional_components}')
|
| 167 |
+
print(f'watermark: {pipe.watermark}')
|
| 168 |
+
print(f'image_processor: {pipe.image_processor}')
|
| 169 |
+
print(f'feature_extractor: {pipe.feature_extractor}')
|
| 170 |
+
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
|
| 171 |
+
#print(f'UNET: {pipe.unet}')
|
| 172 |
+
pipe.watermark=None
|
| 173 |
+
pipe.safety_checker=None
|
| 174 |
+
#pipe.to(torch.device("cuda:0"))
|
| 175 |
+
#pipe.vae.to(torch.bfloat16)
|
| 176 |
+
#pipe.to(device, torch.bfloat16)
|
| 177 |
+
#del pipeX
|
| 178 |
+
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
|
| 179 |
+
#sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
|
| 180 |
+
#sched = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 181 |
return pipe
|
| 182 |
|
| 183 |
# Preload and compile both models
|
|
|
|
| 185 |
|
| 186 |
MAX_SEED = np.iinfo(np.int32).max
|
| 187 |
|
| 188 |
+
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
|
| 189 |
+
|
| 190 |
+
def upload_to_ftp(filename):
|
| 191 |
+
try:
|
| 192 |
+
transport = paramiko.Transport((FTP_HOST, 22))
|
| 193 |
+
destination_path=FTP_DIR+filename
|
| 194 |
+
transport.connect(username = FTP_USER, password = FTP_PASS)
|
| 195 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
| 196 |
+
sftp.put(filename, destination_path)
|
| 197 |
+
sftp.close()
|
| 198 |
+
transport.close()
|
| 199 |
+
print(f"Uploaded {filename} to FTP server")
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"FTP upload error: {e}")
|
| 202 |
+
|
| 203 |
def save_image(img):
|
| 204 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 205 |
+
img.save(unique_name,optimize=False,compress_level=0)
|
| 206 |
return unique_name
|
| 207 |
|
| 208 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
|
| 210 |
seed = random.randint(0, MAX_SEED)
|
| 211 |
return seed
|
| 212 |
|
| 213 |
+
@spaces.GPU(duration=30)
|
| 214 |
+
def generate_30(
|
| 215 |
model_choice: str,
|
| 216 |
prompt: str,
|
| 217 |
negative_prompt: str = "",
|
| 218 |
use_negative_prompt: bool = False,
|
| 219 |
+
style_selection: str = "",
|
| 220 |
seed: int = 1,
|
| 221 |
width: int = 768,
|
| 222 |
height: int = 768,
|
| 223 |
guidance_scale: float = 4,
|
| 224 |
+
num_inference_steps: int = 125,
|
| 225 |
randomize_seed: bool = False,
|
| 226 |
use_resolution_binning: bool = True,
|
| 227 |
num_images: int = 1,
|
| 228 |
+
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 229 |
):
|
| 230 |
+
torch.cuda.empty_cache()
|
| 231 |
+
gc.collect()
|
| 232 |
global models
|
| 233 |
pipe = models[model_choice]
|
|
|
|
| 234 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 235 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 236 |
+
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
|
|
|
|
| 237 |
options = {
|
| 238 |
"prompt": [prompt] * num_images,
|
| 239 |
+
"negative_prompt": [negative_prompt],
|
| 240 |
+
"negative_prompt_2": [neg_prompt_2],
|
| 241 |
"width": width,
|
| 242 |
"height": height,
|
| 243 |
"guidance_scale": guidance_scale,
|
| 244 |
"num_inference_steps": num_inference_steps,
|
| 245 |
"generator": generator,
|
| 246 |
+
# "timesteps": sampling_schedule,
|
| 247 |
"output_type": "pil",
|
| 248 |
}
|
|
|
|
| 249 |
if use_resolution_binning:
|
| 250 |
options["use_resolution_binning"] = True
|
| 251 |
+
images = []
|
| 252 |
+
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 253 |
+
# write note txt
|
| 254 |
+
filename= f'tst_{seed}.txt'
|
| 255 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 256 |
+
with open(filename, "w") as f:
|
| 257 |
+
f.write(f"Realvis 5.0: {seed} png\n")
|
| 258 |
+
f.write(f"Date/time: {timestamp} \n")
|
| 259 |
+
f.write(f"Prompt: {prompt} \n")
|
| 260 |
+
f.write(f"Steps: {num_inference_steps} \n")
|
| 261 |
+
f.write(f"Guidance Scale: {guidance_scale} \n")
|
| 262 |
+
f.write(f"SPACE SETUP: \n")
|
| 263 |
+
f.write(f"Use Model Dtype: no \n")
|
| 264 |
+
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 265 |
+
f.write(f"Model VAE: FP64 \n")
|
| 266 |
+
f.write(f"Model UNET: FP64 \n")
|
| 267 |
+
upload_to_ftp(filename)
|
| 268 |
+
for i in range(0, num_images, BATCH_SIZE):
|
| 269 |
+
batch_options = options.copy()
|
| 270 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 271 |
+
if "negative_prompt" in batch_options:
|
| 272 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 273 |
+
images.extend(pipe(**batch_options).images)
|
| 274 |
+
sd_image_path = f"rv50_{seed}.png"
|
| 275 |
+
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
| 276 |
+
upload_to_ftp(sd_image_path)
|
| 277 |
+
image_paths = [save_image(img) for img in images]
|
| 278 |
+
torch.cuda.empty_cache()
|
| 279 |
+
gc.collect()
|
| 280 |
+
return image_paths, seed
|
| 281 |
|
| 282 |
+
@spaces.GPU(duration=60)
|
| 283 |
+
def generate_60(
|
| 284 |
+
model_choice: str,
|
| 285 |
+
prompt: str,
|
| 286 |
+
negative_prompt: str = "",
|
| 287 |
+
use_negative_prompt: bool = False,
|
| 288 |
+
style_selection: str = "",
|
| 289 |
+
seed: int = 1,
|
| 290 |
+
width: int = 768,
|
| 291 |
+
height: int = 768,
|
| 292 |
+
guidance_scale: float = 4,
|
| 293 |
+
num_inference_steps: int = 250,
|
| 294 |
+
randomize_seed: bool = False,
|
| 295 |
+
use_resolution_binning: bool = True,
|
| 296 |
+
num_images: int = 1,
|
| 297 |
+
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 298 |
+
):
|
| 299 |
+
torch.cuda.empty_cache()
|
| 300 |
+
gc.collect()
|
| 301 |
+
global models
|
| 302 |
+
pipe = models[model_choice]
|
| 303 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 304 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 305 |
+
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
| 306 |
+
options = {
|
| 307 |
+
"prompt": [prompt] * num_images,
|
| 308 |
+
"negative_prompt": [negative_prompt],
|
| 309 |
+
"negative_prompt_2": [neg_prompt_2],
|
| 310 |
+
"width": width,
|
| 311 |
+
"height": height,
|
| 312 |
+
"guidance_scale": guidance_scale,
|
| 313 |
+
"num_inference_steps": num_inference_steps,
|
| 314 |
+
"generator": generator,
|
| 315 |
+
# "timesteps": sampling_schedule,
|
| 316 |
+
"output_type": "pil",
|
| 317 |
+
}
|
| 318 |
+
if use_resolution_binning:
|
| 319 |
+
options["use_resolution_binning"] = True
|
| 320 |
images = []
|
| 321 |
+
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 322 |
+
# write note txt
|
| 323 |
+
filename= f'tst_{seed}.txt'
|
| 324 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 325 |
+
with open(filename, "w") as f:
|
| 326 |
+
f.write(f"Realvis 5.0: {seed} png\n")
|
| 327 |
+
f.write(f"Date/time: {timestamp} \n")
|
| 328 |
+
f.write(f"Prompt: {prompt} \n")
|
| 329 |
+
f.write(f"Steps: {num_inference_steps} \n")
|
| 330 |
+
f.write(f"Guidance Scale: {guidance_scale} \n")
|
| 331 |
+
f.write(f"SPACE SETUP: \n")
|
| 332 |
+
f.write(f"Use Model Dtype: no \n")
|
| 333 |
+
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 334 |
+
f.write(f"Model VAE: FP64 \n")
|
| 335 |
+
f.write(f"Model UNET: FP64 \n")
|
| 336 |
+
upload_to_ftp(filename)
|
| 337 |
for i in range(0, num_images, BATCH_SIZE):
|
| 338 |
batch_options = options.copy()
|
| 339 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 340 |
if "negative_prompt" in batch_options:
|
| 341 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 342 |
images.extend(pipe(**batch_options).images)
|
| 343 |
+
sd_image_path = f"rv50_{seed}.png"
|
| 344 |
+
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
| 345 |
+
upload_to_ftp(sd_image_path)
|
| 346 |
+
image_paths = [save_image(img) for img in images]
|
| 347 |
+
torch.cuda.empty_cache()
|
| 348 |
+
gc.collect()
|
| 349 |
+
return image_paths, seed
|
| 350 |
|
| 351 |
+
@spaces.GPU(duration=90)
|
| 352 |
+
def generate_90(
|
| 353 |
+
model_choice: str,
|
| 354 |
+
prompt: str,
|
| 355 |
+
negative_prompt: str = "",
|
| 356 |
+
use_negative_prompt: bool = False,
|
| 357 |
+
style_selection: str = "",
|
| 358 |
+
seed: int = 1,
|
| 359 |
+
width: int = 768,
|
| 360 |
+
height: int = 768,
|
| 361 |
+
guidance_scale: float = 4,
|
| 362 |
+
num_inference_steps: int = 250,
|
| 363 |
+
randomize_seed: bool = False,
|
| 364 |
+
use_resolution_binning: bool = True,
|
| 365 |
+
num_images: int = 1,
|
| 366 |
+
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 367 |
+
):
|
| 368 |
+
torch.cuda.empty_cache()
|
| 369 |
+
gc.collect()
|
| 370 |
+
global models
|
| 371 |
+
pipe = models[model_choice]
|
| 372 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 373 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 374 |
+
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
| 375 |
+
options = {
|
| 376 |
+
"prompt": [prompt] * num_images,
|
| 377 |
+
"negative_prompt": [negative_prompt],
|
| 378 |
+
"negative_prompt_2": [neg_prompt_2],
|
| 379 |
+
"width": width,
|
| 380 |
+
"height": height,
|
| 381 |
+
"guidance_scale": guidance_scale,
|
| 382 |
+
"num_inference_steps": num_inference_steps,
|
| 383 |
+
"generator": generator,
|
| 384 |
+
# "timesteps": sampling_schedule,
|
| 385 |
+
"output_type": "pil",
|
| 386 |
+
}
|
| 387 |
+
if use_resolution_binning:
|
| 388 |
+
options["use_resolution_binning"] = True
|
| 389 |
+
images = []
|
| 390 |
+
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
| 391 |
+
# write note txt
|
| 392 |
+
filename= f'tst_{seed}.txt'
|
| 393 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 394 |
+
with open(filename, "w") as f:
|
| 395 |
+
f.write(f"Realvis 5.0: {seed} png\n")
|
| 396 |
+
f.write(f"Date/time: {timestamp} \n")
|
| 397 |
+
f.write(f"Prompt: {prompt} \n")
|
| 398 |
+
f.write(f"Steps: {num_inference_steps} \n")
|
| 399 |
+
f.write(f"Guidance Scale: {guidance_scale} \n")
|
| 400 |
+
f.write(f"SPACE SETUP: \n")
|
| 401 |
+
f.write(f"Use Model Dtype: no \n")
|
| 402 |
+
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 403 |
+
f.write(f"Model VAE: FP64 \n")
|
| 404 |
+
f.write(f"Model UNET: FP64 \n")
|
| 405 |
+
upload_to_ftp(filename)
|
| 406 |
+
for i in range(0, num_images, BATCH_SIZE):
|
| 407 |
+
batch_options = options.copy()
|
| 408 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 409 |
+
if "negative_prompt" in batch_options:
|
| 410 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 411 |
+
images.extend(pipe(**batch_options).images)
|
| 412 |
+
sd_image_path = f"rv50_{seed}.png"
|
| 413 |
+
images[0].save(sd_image_path,optimize=False,compress_level=0)
|
| 414 |
+
upload_to_ftp(sd_image_path)
|
| 415 |
image_paths = [save_image(img) for img in images]
|
| 416 |
+
torch.cuda.empty_cache()
|
| 417 |
+
gc.collect()
|
| 418 |
return image_paths, seed
|
| 419 |
|
| 420 |
def load_predefined_images1():
|
|
|
|
| 431 |
]
|
| 432 |
return predefined_images1
|
| 433 |
|
| 434 |
+
css = '''
|
| 435 |
+
#col-container {
|
| 436 |
+
margin: 0 auto;
|
| 437 |
+
max-width: 640px;
|
| 438 |
+
}
|
| 439 |
+
h1{text-align:center}
|
| 440 |
+
footer {
|
| 441 |
+
visibility: hidden
|
| 442 |
+
}
|
| 443 |
+
body {
|
| 444 |
+
background-color: green;
|
| 445 |
+
}
|
| 446 |
+
'''
|
| 447 |
|
| 448 |
+
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
gr.Markdown(DESCRIPTIONXX)
|
| 450 |
with gr.Row():
|
| 451 |
prompt = gr.Text(
|
|
|
|
| 455 |
placeholder="Enter your prompt",
|
| 456 |
container=False,
|
| 457 |
)
|
| 458 |
+
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
|
| 459 |
+
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
|
| 460 |
+
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
|
| 461 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
| 462 |
|
| 463 |
with gr.Row():
|
|
|
|
| 467 |
value="REALVISXL V5.0 BF16"
|
| 468 |
)
|
| 469 |
|
|
|
|
| 470 |
style_selection = gr.Radio(
|
| 471 |
show_label=True,
|
| 472 |
container=True,
|
|
|
|
| 490 |
max_lines=5,
|
| 491 |
lines=4,
|
| 492 |
placeholder="Enter a negative prompt",
|
| 493 |
+
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
|
| 494 |
visible=True,
|
| 495 |
)
|
| 496 |
seed = gr.Slider(
|
|
|
|
| 520 |
guidance_scale = gr.Slider(
|
| 521 |
label="Guidance Scale",
|
| 522 |
minimum=0.1,
|
| 523 |
+
maximum=30,
|
| 524 |
step=0.1,
|
| 525 |
+
value=4,
|
| 526 |
)
|
| 527 |
num_inference_steps = gr.Slider(
|
| 528 |
label="Number of inference steps",
|
|
|
|
| 547 |
|
| 548 |
gr.on(
|
| 549 |
triggers=[
|
| 550 |
+
run_button_30.click,
|
| 551 |
+
],
|
| 552 |
+
# api_name="generate", # Add this line
|
| 553 |
+
fn=generate_30,
|
| 554 |
+
inputs=[
|
| 555 |
+
model_choice,
|
| 556 |
+
prompt,
|
| 557 |
+
negative_prompt,
|
| 558 |
+
use_negative_prompt,
|
| 559 |
+
style_selection,
|
| 560 |
+
seed,
|
| 561 |
+
width,
|
| 562 |
+
height,
|
| 563 |
+
guidance_scale,
|
| 564 |
+
num_inference_steps,
|
| 565 |
+
randomize_seed,
|
| 566 |
+
num_images,
|
| 567 |
+
],
|
| 568 |
+
outputs=[result, seed],
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
gr.on(
|
| 572 |
+
triggers=[
|
| 573 |
+
run_button_60.click,
|
| 574 |
+
],
|
| 575 |
+
# api_name="generate", # Add this line
|
| 576 |
+
fn=generate_60,
|
| 577 |
+
inputs=[
|
| 578 |
+
model_choice,
|
| 579 |
+
prompt,
|
| 580 |
+
negative_prompt,
|
| 581 |
+
use_negative_prompt,
|
| 582 |
+
style_selection,
|
| 583 |
+
seed,
|
| 584 |
+
width,
|
| 585 |
+
height,
|
| 586 |
+
guidance_scale,
|
| 587 |
+
num_inference_steps,
|
| 588 |
+
randomize_seed,
|
| 589 |
+
num_images,
|
| 590 |
+
],
|
| 591 |
+
outputs=[result, seed],
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
gr.on(
|
| 595 |
+
triggers=[
|
| 596 |
+
run_button_90.click,
|
| 597 |
],
|
| 598 |
+
# api_name="generate", # Add this line
|
| 599 |
+
fn=generate_90,
|
| 600 |
inputs=[
|
| 601 |
model_choice,
|
| 602 |
prompt,
|
|
|
|
| 661 |
outputs=gr.Textbox(label="Text Generated"),
|
| 662 |
title=title,
|
| 663 |
description=description,
|
|
|
|
| 664 |
)
|
| 665 |
|
| 666 |
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
|