ford442's picture
Update app.py
c2256a1 verified
import spaces
import sys
import os
import subprocess
@spaces.GPU(duration=120)
def install_flashattn():
subprocess.run(['sh', './flashattn.sh'])
install_flashattn()
# --- PyTorch Environment Setup ---
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import torch
# Set precision settings for reproducibility and performance
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False # Set to True for potential speedup if input sizes are static, False for dynamic
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
import cv2
import gc
import paramiko
#from image_gen_aux import UpscaleWithModel # REMOVED: UpscaleWithModel import
import numpy as np
import gradio as gr
import random
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
from diffusers import AutoencoderKL
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from moviepy.editor import VideoFileClip, concatenate_videoclips
from typing import Any, Dict, Optional, Tuple
# Imports for TeaCache
from ltx_video.models.transformers.transformer3d import Transformer3DModel, Transformer3DModelOutput
from diffusers.utils import logging
import re
logger = logging.get_logger(__name__)
# --- Start TeaCache Integration ---
# 1. Store the original, unbound forward method from the class definition
original_transformer_forward = Transformer3DModel.forward
# 2. Define our new, robust wrapper function
def teacache_wrapper_forward(self, hidden_states: torch.Tensor, **kwargs):
if not hasattr(self, "enable_teacache") or not self.enable_teacache:
# Call the original method if TeaCache is disabled
return original_transformer_forward(self, hidden_states=hidden_states, **kwargs)
# Determine if we should calculate or skip
should_calc = True
if self.cnt > 0 and self.cnt < self.num_steps - 1:
if (hasattr(self, "previous_hidden_states") and
self.previous_hidden_states is not None and
self.previous_hidden_states.shape == hidden_states.shape):
rel_l1_dist = ((hidden_states - self.previous_hidden_states).abs().mean() / self.previous_hidden_states.abs().mean()).cpu().item()
self.accumulated_rel_l1_distance += rel_l1_dist
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
self.accumulated_rel_l1_distance = 0
else:
# Force calculation if shapes mismatch or it's the first time in a new pass
self.accumulated_rel_l1_distance = 0
self.cnt += 1
if not should_calc and hasattr(self, "previous_residual") and self.previous_residual is not None and self.previous_residual.shape == hidden_states.shape:
# SKIP: Use the cached result
# The pipeline expects a Transformer3DModelOutput object.
return Transformer3DModelOutput(sample=self.previous_residual + hidden_states)
else:
# COMPUTE: Call the original, stored method, passing 'self' explicitly
self.previous_hidden_states = hidden_states.clone()
output = original_transformer_forward(self, hidden_states=hidden_states, **kwargs)
# Handle both tuple and object return types from the original function
if isinstance(output, tuple):
output_tensor = output[0]
else:
output_tensor = output.sample
self.previous_residual = output_tensor - hidden_states
return output
# 3. Apply the patch
Transformer3DModel.forward = teacache_wrapper_forward
print("✅ Transformer3DModel patched with robust TeaCache Wrapper.")
# --- End TeaCache Integration ---
MAX_SEED = np.iinfo(np.int32).max
# REMOVED: Upscaler pipeline initialization
#upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
# REMOVED: SDXL Image-to-Image enhancer pipeline initialization
# print("Loading SDXL Image-to-Image pipeline...")
# enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
# "ford442/stable-diffusion-xl-refiner-1.0-bf16",
# use_safetensors=True,
# requires_aesthetics_score=True,
# )
# enhancer_pipeline.vae.set_default_attn_processor()
# enhancer_pipeline.to("cpu")
# print("SDXL Image-to-Image pipeline loaded successfully.")
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 900
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
pipeline_instance = None
latent_upsampler_instance = None
temporal_upsampler_instance = None
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(repo_id=LTX_REPO, filename=SPATIAL_UPSCALER_FILENAME, local_dir=models_dir, local_dir_use_symlinks=False)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
# --- Download Temporal Upscaler (Corrected Location) ---
TEMPORAL_UPSCALER_FILENAME = "ltxv-temporal-upscaler-0.9.8.safetensors"
try:
print(f"Downloading temporal upscaler model: {TEMPORAL_UPSCALER_FILENAME}")
temporal_upscaler_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=TEMPORAL_UPSCALER_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["temporal_upscaler_model_path"] = temporal_upscaler_actual_path
except Exception as e:
print(f"Warning: Could not download temporal upscaler ({TEMPORAL_UPSCALER_FILENAME}). Proceeding without it. Error: {e}")
PIPELINE_CONFIG_YAML["temporal_upscaler_model_path"] = None
# --- Create Pipeline Instances ---
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"]
)
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], device="cpu")
if PIPELINE_CONFIG_YAML.get("temporal_upscaler_model_path"):
print("Creating temporal upsampler on CPU...")
temporal_upsampler_instance = create_latent_upsampler(PIPELINE_CONFIG_YAML["temporal_upscaler_model_path"], device="cpu")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance: latent_upsampler_instance.to(target_inference_device)
if temporal_upsampler_instance: temporal_upsampler_instance.to(target_inference_device)
dynamic_shapes = {
"hidden_states": {
0: torch.export.Dim("batch_size"),
1: torch.export.Dim("num_frames"),
# <-- CRUCIAL for video
2: torch.export.Dim("sequence_length"),
},
"encoder_hidden_states": {
0: torch.export.Dim("batch_size"),
1: torch.export.Dim("text_sequence_length"),
},
# ... add other inputs as needed, just like we did before
}
def get_duration(*args, **kwargs):
duration_ui = kwargs.get('duration_ui', 5.0)
if duration_ui > 7.0: return 110
if duration_ui > 5.0: return 100
if duration_ui > 4.0: return 90
if duration_ui > 3.0: return 70
if duration_ui > 2.0: return 60
if duration_ui > 1.5: return 50
if duration_ui > 1.0: return 45
if duration_ui > 0.5: return 30
return 90
def upload_to_sftp(local_filepath):
if not all([FTP_HOST, FTP_USER, FTP_PASS, FTP_DIR]):
print("SFTP credentials not set. Skipping upload.")
return
try:
transport = paramiko.Transport((FTP_HOST, 22))
transport.connect(username=FTP_USER, password=FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
remote_filename = os.path.basename(local_filepath)
remote_filepath = os.path.join(FTP_DIR, remote_filename)
print(f"Uploading {local_filepath} to {remote_filepath}...")
sftp.put(local_filepath, remote_filepath)
print("Upload successful.")
sftp.close()
transport.close()
except Exception as e:
print(f"SFTP upload failed: {e}")
gr.Warning(f"SFTP upload failed: {e}")
def calculate_new_dimensions(orig_w, orig_h):
if orig_w == 0 or orig_h == 0: return int(1024), int(1024)
if orig_w >= orig_h:
new_h, new_w = 1024, round((1024 * (orig_w / orig_h)) / 32) * 32
else:
new_w, new_h = 1024, round((1024 * (orig_h / orig_w)) / 32) * 32
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
# REMOVED: superres_image function
# REMOVED: enhance_frame function
# MODIFIED: Removed calls to superres_image and enhance_frame
def use_last_frame_as_input(video_filepath):
if not video_filepath or not os.path.exists(video_filepath):
gr.Warning("No video clip available.")
return None, gr.update()
cap = None
try:
cap = cv2.VideoCapture(video_filepath)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
ret, frame = cap.read()
if not ret: raise ValueError("Failed to read frame.")
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
print("Displaying last frame and switching tab...")
yield pil_image, gr.update(selected="i2v_tab")
except Exception as e:
gr.Error(f"Failed to extract frame: {e}")
return None, gr.update()
finally:
if cap: cap.release()
def stitch_videos(clips_list):
if not clips_list or len(clips_list) < 2:
raise gr.Error("You need at least two clips to stitch them together!")
print(f"Stitching {len(clips_list)} clips...")
try:
video_clips = [VideoFileClip(clip_path) for clip_path in clips_list]
final_clip = concatenate_videoclips(video_clips, method="compose")
final_output_path = os.path.join(tempfile.mkdtemp(), f"stitched_video_{random.randint(10000,99999)}.mp4")
high_quality_params = ['-crf', '0', '-preset', 'veryslow']
final_clip.write_videofile(
final_output_path,
codec="libx264",
audio=False,
threads=4,
ffmpeg_params=high_quality_params # <-- USE PARAMS HERE
)
for clip in video_clips:
clip.close()
return final_output_path
except Exception as e:
raise gr.Error(f"Failed to stitch videos: {e}")
def clear_clips():
# state, counter, video1, video2, toggle_visible, tensor_state, randomize_seed
return [], "Clips created: 0", None, None, gr.update(visible=False, value=False), None, gr.update(value=True)
@spaces.GPU(duration=get_duration)
def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_video_filepath,
last_frame_tensor_from_state,
height_ui, width_ui, mode, duration_ui, ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
use_temporal_upscaler_flag, use_last_tensor_flag,
num_steps, fps,
enable_teacache, teacache_threshold,
text_encoder_max_tokens_ui,
image_cond_noise_scale_ui, # <--- NEW PARAMETER ADDED HERE
progress=gr.Progress(track_tqdm=True)):
# --- FIX: TeaCache + Multi-Scale Incompatibility ---
# Force disable TeaCache if multi-scale is on, as the state will not be
# reset between the first and second pass, corrupting the output.
if improve_texture_flag and enable_teacache:
gr.Warning("TeaCache is incompatible with Multi-Scale mode. Disabling TeaCache for this run.")
enable_teacache = False
# Configure TeaCache state on the transformer instance for this run
try:
pipeline_instance.transformer.enable_teacache = enable_teacache
if enable_teacache:
print(f"✅ TeaCache is ENABLED with threshold: {teacache_threshold}")
pipeline_instance.transformer.rel_l1_thresh = teacache_threshold
else:
print("❌ TeaCache is DISABLED.")
except AttributeError:
print("⚠️ Could not configure TeaCache on transformer.")
# Set highest precision for the main generation pipeline
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.set_float32_matmul_precision("highest")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
if mode not in ["text-to-video", "image-to-video", "video-to-video"]:
raise gr.Error(f"Invalid mode: {mode}.")
# Input validation
if (mode == "image-to-video"
and not input_image_filepath
and not (use_last_tensor_flag and last_frame_tensor_from_state is not None)):
raise gr.Error("Input image is required for image-to-video mode (or 'Use Last Frame' must be checked).")
elif mode == "video-to-video" and not input_video_filepath:
raise gr.Error("input_video_filepath is required for video-to-video mode")
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
actual_height, actual_width = int(height_ui), int(width_ui)
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
num_frames_padded = max(9, ((actual_num_frames - 2) // 8 + 1) * 8 + 1)
call_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
"num_frames": num_frames_padded, "num_inference_steps": num_steps, "frame_rate": int(fps),
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt", "conditioning_items": None, "media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": image_cond_noise_scale_ui,
"is_video": True, "vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"text_encoder_max_tokens": text_encoder_max_tokens_ui, # <-- PASSED HERE
"offload_to_cpu": False, "enhance_prompt": False
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values").lower()
stg_map = {
"stg_av": SkipLayerStrategy.AttentionValues, "attention_values": SkipLayerStrategy.AttentionValues,
"stg_as": SkipLayerStrategy.AttentionSkip, "attention_skip": SkipLayerStrategy.AttentionSkip,
"stg_r": SkipLayerStrategy.Residual, "residual": SkipLayerStrategy.Residual,
"stg_t": SkipLayerStrategy.TransformerBlock, "transformer_block": SkipLayerStrategy.TransformerBlock
}
call_kwargs["skip_layer_strategy"] = stg_map.get(stg_mode_str, SkipLayerStrategy.AttentionValues)
# --- INPUT LOGIC: Priority = Direct Tensor > Image File > Video File ---
if use_last_tensor_flag and last_frame_tensor_from_state is not None:
print("Using last frame tensor as input (Direct Tensor).")
media_tensor = last_frame_tensor_from_state.to(target_inference_device)
b, c, n, h, w = media_tensor.shape
# CRITICAL FIX 2: Better interpolation for Latents
# Latents are compressed data. 'bilinear' can smear features.
# 'nearest-exact' preserves distinct latent features better if resizing is strictly necessary.
# However, avoiding resizing entirely is best.
if h != actual_height or w != actual_width:
media_tensor_4d = media_tensor.view(b * n, c, h, w)
resized_tensor_4d = torch.nn.functional.interpolate(
media_tensor_4d,
size=(actual_height, actual_width),
mode='bilinear', # Changed from bilinear
align_corners=False,
antialias=False
)
media_tensor_5d = resized_tensor_4d.view(b, c, n, actual_height, actual_width)
else:
media_tensor_5d = media_tensor
# Pad and set
call_kwargs["conditioning_items"] = [ConditioningItem(
torch.nn.functional.pad(media_tensor, padding_values).to(target_inference_device),
0,
1.0
)]
elif mode == "image-to-video":
print("Using image file as input.")
# Standard noise scale is fine for I2V from file
call_kwargs["image_cond_noise_scale"] = 0.05
media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
call_kwargs["conditioning_items"] = [ConditioningItem(torch.nn.functional.pad(media_tensor, padding_values).to(target_inference_device), 0, 1.0)]
elif mode == "video-to-video":
print("Using video file as input.")
call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=actual_height, width=actual_width, max_frames=int(ui_frames_to_use), padding=padding_values).to(target_inference_device)
# --- END INPUT LOGIC ---
if improve_texture_flag and latent_upsampler_instance:
# --- Temporal Upscaler Logic ---
temporal_upsampler_to_use = None
if use_temporal_upscaler_flag and temporal_upsampler_instance:
print("Temporal upscaler is ENABLED.")
temporal_upsampler_to_use = temporal_upsampler_instance
elif use_temporal_upscaler_flag:
print("Warning: Temporal upscaler toggled ON, but model 'temporal_upsampler_instance' was not found.")
else:
print("Temporal upscaler is DISABLED by user toggle.")
# --- FIX: Pass temporal_upsampler_to_use as the 3RD POSITIONAL ARG ---
multi_scale_pipeline = LTXMultiScalePipeline(
pipeline_instance,
latent_upsampler_instance
)
pass_args = {"guidance_scale": float(ui_guidance_scale)}
multi_scale_kwargs = {
**call_kwargs,
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": {**PIPELINE_CONFIG_YAML.get("first_pass", {}), **pass_args},
"second_pass": {**PIPELINE_CONFIG_YAML.get("second_pass", {}), **pass_args},
"temporal_upsampler": temporal_upsampler_to_use
}
# Configure TeaCache for the *first pass*
# (Note: This is imperfect, as the second pass will run without a reset)
first_pass_steps = multi_scale_kwargs.get("first_pass", {}).get("num_inference_steps", num_steps)
pipeline_instance.transformer.num_steps = first_pass_steps
pipeline_instance.transformer.cnt = 0
pipeline_instance.transformer.previous_hidden_states = None
pipeline_instance.transformer.previous_residual = None
pipeline_instance.transformer.accumulated_rel_l1_distance = 0
result_images_tensor = multi_scale_pipeline(**multi_scale_kwargs).images
else:
# --- Configure TeaCache for a single pass ---
pipeline_instance.transformer.num_steps = num_steps
pipeline_instance.transformer.cnt = 0
pipeline_instance.transformer.previous_hidden_states = None
pipeline_instance.transformer.previous_residual = None
pipeline_instance.transformer.accumulated_rel_l1_distance = 0
single_pass_kwargs = {**call_kwargs, "guidance_scale": float(ui_guidance_scale), **PIPELINE_CONFIG_YAML.get("first_pass", {})}
result_images_tensor = pipeline_instance(**single_pass_kwargs).images
if result_images_tensor is None: raise gr.Error("Generation failed.")
pad_l, pad_r, pad_t, pad_b = padding_values
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_t:(-pad_b or None), pad_l:(-pad_r or None)]
video_np = (np.clip(result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy(), 0, 1) * 255).astype(np.uint8)
output_video_path = os.path.join(tempfile.mkdtemp(), f"output_{random.randint(10000,99999)}.mp4")
with imageio.get_writer(output_video_path, format='FFMPEG', fps=call_kwargs["frame_rate"], codec='libx264', quality=10, pixelformat='yuv420p') as video_writer:
for idx, frame in enumerate(video_np):
progress(idx / len(video_np), desc="Saving video clip...")
video_writer.append_data(frame)
#upload_to_sftp(output_video_path)
# --- Extract Last Frame Tensor for Chaining ---
# Get the last frame tensor, but KEEP the 'N' dimension (shape [b, c, 1, h, w])
last_frame_tensor_unnormalized = result_images_tensor[:, :, [-1], :, :].clone().cpu()
# Normalize it to -1 to 1 range, which the conditioning input expects
last_frame_tensor = (last_frame_tensor_unnormalized * 2.0) - 1.0
updated_clips_list = clips_list + [output_video_path]
counter_text = f"Clips created: {len(updated_clips_list)}"
# Return updates for new UI elements
return output_video_path, seed_ui, gr.update(visible=True), updated_clips_list, counter_text, gr.update(visible=True, value=True), last_frame_tensor, gr.update(value=False)
def update_task_image():
return "image-to-video"
def update_task_text():
return "text-to-video"
def update_task_video():
return "video-to-video"
css="""
#col-container{margin:0 auto;max-width:900px;}
"""
with gr.Blocks(css=css) as demo:
clips_state = gr.State([])
last_frame_tensor_state = gr.State(value=None) # <-- For Direct Tensor Chaining
gr.Markdown("# LTX Video Clip Stitcher")
gr.Markdown("Generate short video clips and stitch them together to create a longer animation.")
with gr.Row():
with gr.Column():
with gr.Tabs() as tabs:
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
video_i_hidden = gr.Textbox(visible=False);
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"]);
i2v_prompt = gr.Textbox(label="Prompt", value="The character from the image starts to move.", lines=3);
i2v_button = gr.Button("Generate Image-to-Video Clip", variant="primary")
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
image_n_hidden = gr.Textbox(visible=False);
video_n_hidden = gr.Textbox(visible=False); t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3);
t2v_button = gr.Button("Generate Text-to-Video Clip", variant="primary")
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
image_v_hidden = gr.Textbox(visible=False);
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]);
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=120, value=9, step=8, info="Must be N*8+1.");
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3);
v2v_button = gr.Button("Generate Video-to-Video Clip", variant="primary")
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
use_temporal_upscaler = gr.Checkbox(label="Use Temporal Upscaler (for smoothness)", value=True)
use_last_tensor_toggle = gr.Checkbox(label="Use Last Frame (Direct Tensor)", value=False, visible=False) # <-- For Chaining
# REMOVED: enhance_checkbox
# REMOVED: superres_checkbox
with gr.Column():
output_video = gr.Video(label="Last Generated Clip", interactive=False)
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
with gr.Accordion("Stitching Controls", open=True):
clip_counter_display = gr.Markdown("Clips created: 0")
with gr.Row():
stitch_button = gr.Button("🎬 Stitch All Clips");
clear_button = gr.Button("🗑️ Clear All Clips")
final_video_output = gr.Video(label="Final Stitched Video", interactive=False)
with gr.Accordion("Advanced settings", open=False):
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False);
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted, low clarity, low resolution, grainy, pixelated, oversaturated, glitchy, noisy", lines=2)
with gr.Row():
teacache_checkbox = gr.Checkbox(label="Enable TeaCache Acceleration", value=False)
teacache_slider = gr.Slider(
minimum=0.01,
maximum=0.1,
step=0.01,
value=0.05,
label="TeaCache Threshold (Higher = Faster)"
)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0);
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row(visible=True): # <-- MODIFIED
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1)
with gr.Row():
# --- NEW UI COMPONENT ---
text_encoder_max_tokens_input = gr.Slider(
label="Text Encoder Max Tokens (Affects Speed/Fidelity)",
minimum=16,
maximum=300,
value=300,
step=1
)
with gr.Row():
height_input = gr.Slider(label="Height", value=1024, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
width_input = gr.Slider(label="Width", value=1024, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
with gr.Row():
image_cond_noise_scale_input = gr.Slider(
label="Image Conditioning Noise Scale",
minimum=0.0,
maximum=1.0,
value=0.00,
step=0.01,
info="Controls how much noise is added to the input image/frame. Lower values preserve the image better, higher values allow more creative freedom (0.0 for near-perfect preservation)."
)
num_steps = gr.Slider(label="Steps", value=35, step=1, minimum=1, maximum=420);
fps = gr.Slider(label="FPS", value=24.0, step=1.0, minimum=4.0, maximum=60.0)
def handle_image_upload_for_dims(f, h, w):
if not f: return gr.update(value=h), gr.update(value=w)
img = Image.open(f); new_h, new_w = calculate_new_dimensions(img.width, img.height); return gr.update(value=new_h), gr.update(value=new_w)
def handle_video_upload_for_dims(f, h, w):
if not f or not os.path.exists(str(f)): return gr.update(value=h), gr.update(value=w)
with imageio.get_reader(str(f)) as reader:
meta = reader.get_meta_data(); orig_w, orig_h = meta.get('size', (reader.get_data(0).shape[1], reader.get_data(0).shape[0]));
new_h, new_w = calculate_new_dimensions(orig_w, orig_h); return gr.update(value=new_h), gr.update(value=new_w)
image_i2v.upload(handle_image_upload_for_dims, [image_i2v, height_input, width_input], [height_input, width_input]);
video_v2v.upload(handle_video_upload_for_dims, [video_v2v, height_input, width_input], [height_input, width_input]);
image_tab.select(update_task_image, outputs=[mode]); text_tab.select(update_task_text, outputs=[mode]);
video_tab.select(update_task_video, outputs=[mode])
# --- FIX: Add new UI toggles to common_params ---
common_params = [
height_input, width_input, mode, duration_input, frames_to_use,
seed_input, randomize_seed_input, guidance_scale_input, improve_texture,
use_temporal_upscaler, use_last_tensor_toggle, num_steps, fps,
teacache_checkbox, teacache_slider,
text_encoder_max_tokens_input, # Already there
image_cond_noise_scale_input # <--- NEW SLIDER ADDED HERE
]
t2v_inputs = [t2v_prompt, negative_prompt_input, clips_state, image_n_hidden, video_n_hidden, last_frame_tensor_state] + common_params;
i2v_inputs = [i2v_prompt, negative_prompt_input, clips_state, image_i2v, video_i_hidden, last_frame_tensor_state] + common_params;
v2v_inputs = [v2v_prompt, negative_prompt_input, clips_state, image_v_hidden, video_v2v, last_frame_tensor_state] + common_params
# --- FIX: Add new UI elements to outputs ---
gen_outputs = [
output_video, seed_input, use_last_frame_button,
clips_state, clip_counter_display,
use_last_tensor_toggle, last_frame_tensor_state,
randomize_seed_input # <-- ADDED THIS
]
# This function now needs to hide both buttons
hide_btn = lambda: (gr.update(visible=False), gr.update(visible=False))
t2v_button.click(
hide_btn, outputs=[use_last_frame_button, use_last_tensor_toggle], queue=False
).then(
fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video"
)
i2v_button.click(
hide_btn, outputs=[use_last_frame_button, use_last_tensor_toggle], queue=False
).then(
fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video"
)
v2v_button.click(
hide_btn, outputs=[use_last_frame_button, use_last_tensor_toggle], queue=False
).then(
fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video"
)
# MODIFIED: Removed enhance_checkbox and superres_checkbox from inputs
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[output_video], outputs=[image_i2v, tabs])
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
# Clear button also needs to reset the tensor state and hide the toggle
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output, use_last_tensor_toggle, last_frame_tensor_state, randomize_seed_input])
if __name__ == "__main__":
if os.path.exists(models_dir): print(f"Model directory: {Path(models_dir).resolve()}")
demo.queue().launch(debug=True, share=True, mcp_server=True)