File size: 7,187 Bytes
c6b36b9
 
 
 
 
 
 
 
 
 
da39995
79ec174
08d46f7
c6b36b9
 
 
f300457
dfda494
ac0be08
08d46f7
f300457
c6b36b9
 
 
f300457
79ec174
 
 
f300457
 
c6b36b9
f300457
a4d0555
c6b36b9
f300457
ac0be08
 
 
 
 
 
7a5e372
ac0be08
 
c6b36b9
 
f300457
 
 
a4d0555
c6b36b9
f300457
 
 
 
 
 
 
c6b36b9
a4d0555
f300457
c6b36b9
 
 
f300457
c6b36b9
 
 
 
 
f300457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6b36b9
f300457
 
 
 
 
 
 
 
 
 
 
 
 
 
c6b36b9
f300457
 
 
c6b36b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import json
import os
import torch
from torchvision import transforms
from PIL import Image
import folium
import base64
import glob
import warnings
from datasets import load_dataset
import io
from zipfile import ZipFile

warnings.filterwarnings("ignore", category=FutureWarning)

# Load dataset from Hugging Face
dataset = load_dataset("hangunwoo07/Naturing_Bird_Data")
dataset = dataset['train']  # Access the train split directly

# Load bird data
with open('DB/bird_data.json', 'r', encoding='utf-8') as f:
    bird_data = json.load(f)

# Load model and classes
model_ft = torch.load('bird_detection_model.pth', map_location=torch.device('cpu'))
model_ft.eval()

with open('DB/class_names.json', 'r', encoding='utf-8') as f:
    classes = json.load(f)

# Constants
DSHS_LOCATION = [36.373719, 127.370415]

def create_image_popup(bird_name, image_filename):
    target_image = '/'.join(bird_name, image_filename.split())
    row_index = metadata[metadata['image'] == target_image].index[0] - 1
    
    try:
        with open(dataset['image'][row_index], 'rb') as image_file:
            encoded = base64.b64encode(image_file.read()).decode()
        return f'<img src="data:image/jpeg;base64,{encoded}" width="200px">'
    except:
        return ''

def create_map():
    """
    Create an interactive map with bird sightings
    """
    m = folium.Map(location=DSHS_LOCATION, zoom_start=15)
    
    dshs_popup_content = f"""
                    <div>
                    <h4>대전과학고등학교</h4>
                    </div>
                    """
    
    # 대전과학고 마커 추가
    folium.Marker(
        DSHS_LOCATION,
        popup=folium.Popup(dshs_popup_content, max_width=300),
        tooltip="대전과학고등학교"
    ).add_to(m)
    
    # Process all bird location files
    location_files = glob.glob('./DB/bird_locations_json/bird_locations_*.json')
    
    for file_path in location_files:
        bird_name = file_path.split('_')[-1].replace('.json', '')
        
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                locations_data = json.load(f)
            
            if bird_name in locations_data and locations_data[bird_name]:
                for location_info in locations_data[bird_name]:
                    try:
                        latitude = location_info['latitude']
                        longitude = location_info['longitude']
                        location = location_info['location'].lstrip()  # Remove leading whitespace
                        image_filename = location_info['image_filename']
                        
                        # Create popup content with image from dataset
                        popup_content = f"""
                        <div>
                        <h4>{bird_name}</h4>
                        <p>{location}</p>
                        {create_image_popup(bird_name, image_filename)}
                        </div>
                        """
                    
                        # Add marker
                        folium.CircleMarker(
                            location=[latitude, longitude],
                            radius=4,
                            popup=folium.Popup(popup_content, max_width=300),
                            tooltip=bird_name,
                            color='red',
                            fill=True
                        ).add_to(m)
                    except Exception as e:
                        print(f"Error processing location for {bird_name}: {e}")
                        continue
            else:
                print(f'No locations found for {bird_name}')
                
        except Exception as e:
            print(f"Error processing file {file_path}: {e}")
            continue
    
    return m._repr_html_()


def search_birds(search_term):
    filtered_gallery = []

    for bird_id, bird_info in bird_data.items():
        if search_term.lower() in bird_info['common_name'].lower() or search_term.lower() in bird_info['scientific_name'].lower():
            image_path = os.path.join(image_folder, f"{bird_id}.jpg")
            filtered_gallery.append((image_path, f"{bird_info['common_name']}"))

    return filtered_gallery


def main_page():
    gallery = []

    for bird_id, bird_info in bird_data.items():
        image_path = os.path.join(image_folder, f"{bird_id}.jpg")
        gallery.append((image_path, f"{bird_info['common_name']}"))

    return gallery


def detail_page(evt: gr.SelectData):
    image_path = evt.value['image']['path']
    bird_id = os.path.basename(image_path).split('.')[0]
    selected_bird = bird_data[bird_id]
    info = f"""
    # {selected_bird['common_name']} ({selected_bird['scientific_name']})
   
    ## 분류
    - 문: {selected_bird['classification']['phylum']}
    - 강: {selected_bird['classification']['class']}
    - 목: {selected_bird['classification']['order']}
    - 과: {selected_bird['classification']['family']}
    - 속: {selected_bird['classification']['genus']}
   
    ## 생태적 특징
    {selected_bird['ecological_characteristics']}
   
    ## 일반적 특징
    {selected_bird['general_characteristics']}
    """
   
    return image_path, info


def apply_test_transforms(inp):
    out = transforms.functional.resize(inp, [224,224])
    out = transforms.functional.to_tensor(out)
    out = transforms.functional.normalize(out, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    return out


def predict(model, filepath):
    im = Image.open(filepath)
    im_as_tensor = apply_test_transforms(im)
    minibatch = torch.stack([im_as_tensor])
    if torch.cuda.is_available():
        minibatch = minibatch.cuda()
    pred = model(minibatch)
    _, classnum = torch.max(pred, 1)
    print(classnum)

    return classes[str(classnum.item())]


def classify_bird(image):
    result = predict(model_ft, image)
    return result


with gr.Blocks() as demo:
    gr.Markdown("# BIORD")
    gr.Markdown("## Bird's Information & Organized Regional Database")

    # 대전과학고 지도 탭
    with gr.Tab("대전과고 지도"):
        map_html = gr.HTML(value=create_map())

    # 조류 도감 탭
    with gr.Tab("조류 도감"):
        with gr.Row():
            search_input = gr.Textbox(label="새 이름 검색", placeholder="검색하고 싶은 새의 이름을 입력하세요")
        with gr.Row():
            with gr.Column(scale=2):
                gallery = gr.Gallery(value=main_page(), columns=40, rows=6, height=660)
            with gr.Column(scale=3):
                selected_image = gr.Image(label="선택한 새")
                info = gr.Markdown(label="상세 정보")
        search_input.change(search_birds, inputs=[search_input], outputs=[gallery])
        gallery.select(detail_page, None, [selected_image, info])

    # 조류 동정 탭
    with gr.Tab("조류 동정"):
        image_input = gr.Image(type="filepath")
        classify_btn = gr.Button("예측하기")
        output = gr.Textbox(label="예측 결과")
        classify_btn.click(fn=classify_bird, inputs=image_input, outputs=output)

# 애플리케이션 실행
demo.launch()