Spaces:
Build error
Build error
add logic
Browse files- bary_score.py +9 -18
- requirements.txt +4 -1
- score.py +255 -0
bary_score.py
CHANGED
|
@@ -16,6 +16,8 @@
|
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# TODO: Add BibTeX citation
|
| 21 |
_CITATION = """\
|
|
@@ -53,10 +55,6 @@ Examples:
|
|
| 53 |
{'accuracy': 1.0}
|
| 54 |
"""
|
| 55 |
|
| 56 |
-
# TODO: Define external resources urls if needed
|
| 57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 58 |
-
|
| 59 |
-
|
| 60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
class BaryScore(evaluate.EvaluationModule):
|
| 62 |
"""TODO: Short description of my evaluation module."""
|
|
@@ -71,8 +69,8 @@ class BaryScore(evaluate.EvaluationModule):
|
|
| 71 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
# This defines the format of each prediction and reference
|
| 73 |
features=datasets.Features({
|
| 74 |
-
'predictions': datasets.Value('
|
| 75 |
-
'references': datasets.Value('
|
| 76 |
}),
|
| 77 |
# Homepage of the module for documentation
|
| 78 |
homepage="http://module.homepage",
|
|
@@ -81,15 +79,8 @@ class BaryScore(evaluate.EvaluationModule):
|
|
| 81 |
reference_urls=["http://path.to.reference.url/new_module"]
|
| 82 |
)
|
| 83 |
|
| 84 |
-
def
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
def _compute(self, predictions, references):
|
| 90 |
-
"""Returns the scores"""
|
| 91 |
-
# TODO: Compute the different scores of the module
|
| 92 |
-
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
| 93 |
-
return {
|
| 94 |
-
"accuracy": accuracy,
|
| 95 |
-
}
|
|
|
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
|
| 19 |
+
from score import BaryScoreMetric
|
| 20 |
+
|
| 21 |
|
| 22 |
# TODO: Add BibTeX citation
|
| 23 |
_CITATION = """\
|
|
|
|
| 55 |
{'accuracy': 1.0}
|
| 56 |
"""
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 59 |
class BaryScore(evaluate.EvaluationModule):
|
| 60 |
"""TODO: Short description of my evaluation module."""
|
|
|
|
| 69 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 70 |
# This defines the format of each prediction and reference
|
| 71 |
features=datasets.Features({
|
| 72 |
+
'predictions': datasets.Value('string'),
|
| 73 |
+
'references': datasets.Value('string'),
|
| 74 |
}),
|
| 75 |
# Homepage of the module for documentation
|
| 76 |
homepage="http://module.homepage",
|
|
|
|
| 79 |
reference_urls=["http://path.to.reference.url/new_module"]
|
| 80 |
)
|
| 81 |
|
| 82 |
+
def _compute(self, predictions, references, model_name="bert-base-uncased", last_layers=5, use_idfs=True, sinkhorn_ref=0.01):
|
| 83 |
+
metric_call = BaryScoreMetric(model_name=model_name, last_layers=last_layers, use_idfs=use_idfs, sinkhorn_ref=sinkhorn_ref)
|
| 84 |
+
metric_call.prepare_idfs(references, predictions)
|
| 85 |
+
result = metric_call.evaluate_batch(references, predictions)
|
| 86 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,2 +1,5 @@
|
|
| 1 |
evaluate==0.1.0
|
| 2 |
-
datasets~=2.0
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
evaluate==0.1.0
|
| 2 |
+
datasets~=2.0
|
| 3 |
+
POT
|
| 4 |
+
transformers
|
| 5 |
+
torch
|
score.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import absolute_import, division, print_function
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import ot
|
| 6 |
+
from math import log
|
| 7 |
+
from collections import defaultdict, Counter
|
| 8 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class BaryScoreMetric:
|
| 12 |
+
def __init__(self, model_name="bert-base-uncased", last_layers=5, use_idfs=True, sinkhorn_ref=0.01):
|
| 13 |
+
"""
|
| 14 |
+
BaryScore metric
|
| 15 |
+
:param model_name: model name or path from HuggingFace Librairy
|
| 16 |
+
:param last_layers: last layer to use in the pretrained model
|
| 17 |
+
:param use_idfs: if true use idf costs else use uniform weights
|
| 18 |
+
:param sinkhorn_ref: weight of the KL in the SD
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
self.model_name = model_name
|
| 22 |
+
self.load_tokenizer_and_model()
|
| 23 |
+
n = self.model.config.num_hidden_layers + 1
|
| 24 |
+
assert n - last_layers > 0
|
| 25 |
+
self.layers_to_consider = range(n - last_layers, n)
|
| 26 |
+
self.use_idfs = use_idfs
|
| 27 |
+
self.sinkhorn_ref = sinkhorn_ref
|
| 28 |
+
self.idfs = []
|
| 29 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 30 |
+
|
| 31 |
+
def prepare_idfs(self, hyps, refs):
|
| 32 |
+
"""
|
| 33 |
+
:param hyps: hypothesis list of string sentences has to be computed at corpus level
|
| 34 |
+
:param refs:reference list of string sentences has to be computed at corpus level
|
| 35 |
+
"""
|
| 36 |
+
t_hyps = self.tokenizer(hyps)['input_ids']
|
| 37 |
+
t_refs = self.tokenizer(refs)['input_ids']
|
| 38 |
+
idf_dict_ref = self.ref_list_to_idf(t_refs)
|
| 39 |
+
idf_dict_hyp = self.ref_list_to_idf(t_hyps)
|
| 40 |
+
idfs_tokenizer = (idf_dict_ref, idf_dict_hyp)
|
| 41 |
+
self.model_ids = idfs_tokenizer
|
| 42 |
+
return idf_dict_hyp, idf_dict_ref
|
| 43 |
+
|
| 44 |
+
def ref_list_to_idf(self, input_refs):
|
| 45 |
+
"""
|
| 46 |
+
:param input_refs: list of input reference
|
| 47 |
+
:return: idf dictionnary
|
| 48 |
+
"""
|
| 49 |
+
idf_count = Counter()
|
| 50 |
+
num_docs = len(input_refs)
|
| 51 |
+
|
| 52 |
+
idf_count.update(sum([list(set(i)) for i in input_refs], []))
|
| 53 |
+
|
| 54 |
+
idf_dict = defaultdict(lambda: log((num_docs + 1) / (1)))
|
| 55 |
+
idf_dict.update({idx: log((num_docs + 1) / (c + 1)) for (idx, c) in idf_count.items()})
|
| 56 |
+
return idf_dict
|
| 57 |
+
|
| 58 |
+
def load_tokenizer_and_model(self):
|
| 59 |
+
"""
|
| 60 |
+
Loading and initializing the chosen model and tokenizer
|
| 61 |
+
"""
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained('{}'.format(self.model_name))
|
| 63 |
+
model = AutoModelForMaskedLM.from_pretrained('{}'.format(self.model_name))
|
| 64 |
+
model.config.output_hidden_states = True
|
| 65 |
+
model.eval()
|
| 66 |
+
self.tokenizer = tokenizer
|
| 67 |
+
self.model = model
|
| 68 |
+
|
| 69 |
+
def evaluate_batch(self, batch_hyps, batch_refs, idf_hyps=None, idf_ref=None):
|
| 70 |
+
"""
|
| 71 |
+
:param batch_hyps: hypothesis list of string sentences
|
| 72 |
+
:param batch_refs: reference list of string sentences
|
| 73 |
+
:param idf_hyps: idfs of hypothesis computed at corpus level
|
| 74 |
+
:param idf_ref: idfs of references computed at corpus level
|
| 75 |
+
:return: dictionnary of scores
|
| 76 |
+
"""
|
| 77 |
+
###############################################
|
| 78 |
+
## Extract Embeddings From Pretrained Models ##
|
| 79 |
+
###############################################
|
| 80 |
+
if isinstance(batch_hyps, str):
|
| 81 |
+
batch_hyps = [batch_hyps]
|
| 82 |
+
if isinstance(batch_refs, str):
|
| 83 |
+
batch_refs = [batch_refs]
|
| 84 |
+
nb_sentences = len(batch_refs)
|
| 85 |
+
baryscores = []
|
| 86 |
+
assert len(batch_hyps) == len(batch_refs)
|
| 87 |
+
|
| 88 |
+
if (idf_hyps is None) and (idf_ref is None):
|
| 89 |
+
idf_hyps, idf_ref = self.model_ids
|
| 90 |
+
|
| 91 |
+
model = self.model.to(self.device)
|
| 92 |
+
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
###############################################
|
| 95 |
+
## Extract Embeddings From Pretrained Models ##
|
| 96 |
+
###############################################
|
| 97 |
+
batch_refs = self.tokenizer(batch_refs, return_tensors='pt', padding=True, truncation=True).to(self.device)
|
| 98 |
+
batch_refs_embeddings_ = model(**batch_refs)[-1]
|
| 99 |
+
|
| 100 |
+
batch_hyps = self.tokenizer(batch_hyps, return_tensors='pt', padding=True, truncation=True).to(self.device)
|
| 101 |
+
batch_hyps_embeddings_ = model(**batch_hyps)[-1]
|
| 102 |
+
|
| 103 |
+
batch_refs_embeddings = [batch_refs_embeddings_[i] for i in list(self.layers_to_consider)]
|
| 104 |
+
batch_hyps_embeddings = [batch_hyps_embeddings_[i] for i in list(self.layers_to_consider)]
|
| 105 |
+
|
| 106 |
+
batch_refs_embeddings = torch.cat([i.unsqueeze(0) for i in batch_refs_embeddings])
|
| 107 |
+
batch_refs_embeddings.div_(torch.norm(batch_refs_embeddings, dim=-1).unsqueeze(-1))
|
| 108 |
+
batch_hyps_embeddings = torch.cat([i.unsqueeze(0) for i in batch_hyps_embeddings])
|
| 109 |
+
batch_hyps_embeddings.div_(torch.norm(batch_hyps_embeddings, dim=-1).unsqueeze(-1))
|
| 110 |
+
|
| 111 |
+
ref_tokens_id = batch_refs['input_ids'].cpu().tolist()
|
| 112 |
+
hyp_tokens_id = batch_hyps['input_ids'].cpu().tolist()
|
| 113 |
+
|
| 114 |
+
####################################
|
| 115 |
+
## Unbatched BaryScore Prediction ##
|
| 116 |
+
####################################
|
| 117 |
+
for index_sentence in tqdm(range(nb_sentences), 'BaryScore Progress'):
|
| 118 |
+
dict_score = {}
|
| 119 |
+
ref_ids_idf = batch_refs['input_ids'][index_sentence]
|
| 120 |
+
hyp_idf_ids = batch_hyps['input_ids'][index_sentence]
|
| 121 |
+
|
| 122 |
+
ref_tokens = [i for i in self.tokenizer.convert_ids_to_tokens(ref_tokens_id[index_sentence],
|
| 123 |
+
skip_special_tokens=False) if
|
| 124 |
+
i != self.tokenizer.pad_token]
|
| 125 |
+
hyp_tokens = [i for i in self.tokenizer.convert_ids_to_tokens(hyp_tokens_id[index_sentence],
|
| 126 |
+
skip_special_tokens=False) if
|
| 127 |
+
i != self.tokenizer.pad_token]
|
| 128 |
+
|
| 129 |
+
ref_ids = [k for k, w in enumerate(ref_tokens)]
|
| 130 |
+
hyp_ids = [k for k, w in enumerate(hyp_tokens)]
|
| 131 |
+
|
| 132 |
+
# With stop words
|
| 133 |
+
ref_idf_i = [idf_ref[i] for i in ref_ids_idf[ref_ids]]
|
| 134 |
+
hyp_idf_i = [idf_hyps[i] for i in hyp_idf_ids[hyp_ids]]
|
| 135 |
+
|
| 136 |
+
ref_embedding_i = batch_refs_embeddings[:, index_sentence, ref_ids, :]
|
| 137 |
+
hyp_embedding_i = batch_hyps_embeddings[:, index_sentence, hyp_ids, :]
|
| 138 |
+
measures_locations_ref = ref_embedding_i.permute(1, 0, 2).cpu().numpy().tolist()
|
| 139 |
+
measures_locations_ref = [np.array(i) for i in measures_locations_ref]
|
| 140 |
+
measures_locations_hyps = hyp_embedding_i.permute(1, 0, 2).cpu().numpy().tolist()
|
| 141 |
+
measures_locations_hyps = [np.array(i) for i in measures_locations_hyps]
|
| 142 |
+
|
| 143 |
+
# ADDED
|
| 144 |
+
measures_locations_ref = [np.array(i) for i in
|
| 145 |
+
np.array(measures_locations_ref).transpose(1, 0, 2).tolist()]
|
| 146 |
+
measures_locations_hyps = [np.array(i) for i in
|
| 147 |
+
np.array(measures_locations_hyps).transpose(1, 0,
|
| 148 |
+
2).tolist()]
|
| 149 |
+
|
| 150 |
+
if self.use_idfs:
|
| 151 |
+
#########################
|
| 152 |
+
## Use TF-IDF weights ##
|
| 153 |
+
#########################
|
| 154 |
+
baryscore = self.baryscore(measures_locations_ref, measures_locations_hyps, ref_idf_i,
|
| 155 |
+
hyp_idf_i)
|
| 156 |
+
else:
|
| 157 |
+
#####################
|
| 158 |
+
## Uniform Weights ##
|
| 159 |
+
#####################
|
| 160 |
+
baryscore = self.baryscore(measures_locations_ref, measures_locations_hyps, None, None)
|
| 161 |
+
|
| 162 |
+
for key, value in baryscore.items():
|
| 163 |
+
dict_score['baryscore_{}'.format(key)] = value
|
| 164 |
+
baryscores.append(dict_score)
|
| 165 |
+
baryscores_dic = {}
|
| 166 |
+
for k in dict_score.keys():
|
| 167 |
+
baryscores_dic[k] = []
|
| 168 |
+
for score in baryscores:
|
| 169 |
+
baryscores_dic[k].append(score[k])
|
| 170 |
+
|
| 171 |
+
return baryscores_dic
|
| 172 |
+
|
| 173 |
+
def baryscore(self, measures_locations_ref, measures_locations_hyps, weights_refs, weights_hyps):
|
| 174 |
+
"""
|
| 175 |
+
:param measures_locations_ref: input measure reference locations
|
| 176 |
+
:param measures_locations_hyps: input measure hypothesis locations
|
| 177 |
+
:param weights_refs: references weights in the Wasserstein Barycenters
|
| 178 |
+
:param weights_hyps: hypothesis weights in the Wasserstein Barycenters
|
| 179 |
+
:return:
|
| 180 |
+
"""
|
| 181 |
+
if weights_hyps is not None or weights_refs is not None:
|
| 182 |
+
assert weights_refs is not None
|
| 183 |
+
assert weights_hyps is not None
|
| 184 |
+
weights_hyps = np.array([i / sum(weights_hyps) for i in weights_hyps]).astype(np.float64)
|
| 185 |
+
weights_refs = np.array([i / sum(weights_refs) for i in weights_refs]).astype(np.float64)
|
| 186 |
+
|
| 187 |
+
self.n_layers = len(measures_locations_ref)
|
| 188 |
+
self.d_bert = measures_locations_ref[0].shape[1]
|
| 189 |
+
####################################
|
| 190 |
+
## Compute Wasserstein Barycenter ##
|
| 191 |
+
####################################
|
| 192 |
+
bary_ref = self.w_barycenter(measures_locations_ref, weights_refs)
|
| 193 |
+
bary_hyp = self.w_barycenter(measures_locations_hyps, weights_hyps)
|
| 194 |
+
|
| 195 |
+
#################################################
|
| 196 |
+
## Compute Wasserstein and Sinkhorn Divergence ##
|
| 197 |
+
#################################################
|
| 198 |
+
|
| 199 |
+
C = ot.dist(bary_ref, bary_hyp)
|
| 200 |
+
weights_first_barycenter = np.zeros((C.shape[0])) + 1 / C.shape[0]
|
| 201 |
+
weights_second_barycenter = np.zeros((C.shape[1])) + 1 / C.shape[1]
|
| 202 |
+
wasserstein_distance = ot.emd2(weights_first_barycenter, weights_second_barycenter, C,
|
| 203 |
+
log=True)[0]
|
| 204 |
+
dic_results = {
|
| 205 |
+
"W": wasserstein_distance,
|
| 206 |
+
|
| 207 |
+
}
|
| 208 |
+
for reg in [10, 1, 5, 1, 0.1, 0.5, 0.01, 0.001]:
|
| 209 |
+
wasserstein_sinkhorn = ot.bregman.sinkhorn2(weights_first_barycenter, weights_second_barycenter, C,
|
| 210 |
+
reg=reg, numItermax=10000).tolist()
|
| 211 |
+
if isinstance(wasserstein_sinkhorn, list):
|
| 212 |
+
wasserstein_sinkhorn = wasserstein_sinkhorn[0] # for POT==0.7.0
|
| 213 |
+
dic_results['SD_{}'.format(reg)] = wasserstein_sinkhorn
|
| 214 |
+
return dic_results
|
| 215 |
+
|
| 216 |
+
def w_barycenter(self, measures_locations, weights):
|
| 217 |
+
"""
|
| 218 |
+
:param measures_locations: location of the discrete input measures
|
| 219 |
+
:param weights: weights of the input measures
|
| 220 |
+
:return: barycentrique distribution
|
| 221 |
+
"""
|
| 222 |
+
X_init = np.zeros((measures_locations[0].shape[0], self.d_bert)).astype(np.float64)
|
| 223 |
+
if weights is None:
|
| 224 |
+
measures_weights = [np.array(
|
| 225 |
+
[1 / measures_locations[0].shape[0]] * measures_locations[0].shape[0])] * self.n_layers
|
| 226 |
+
else:
|
| 227 |
+
measures_weights = [weights / sum(weights)] * self.n_layers
|
| 228 |
+
b = np.array([1 / measures_locations[0].shape[0]] * measures_locations[0].shape[0]).astype(np.float64)
|
| 229 |
+
mesure_bary = ot.lp.free_support_barycenter(measures_locations, measures_weights, X_init,
|
| 230 |
+
b=b, numItermax=1000, verbose=False)
|
| 231 |
+
return mesure_bary
|
| 232 |
+
|
| 233 |
+
@property
|
| 234 |
+
def supports_multi_ref(self):
|
| 235 |
+
"""
|
| 236 |
+
:return: BaryScore does not support multi ref
|
| 237 |
+
"""
|
| 238 |
+
return False
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
if __name__ == '__main__':
|
| 242 |
+
"""
|
| 243 |
+
Here you can find an example to use the BaryScore
|
| 244 |
+
"""
|
| 245 |
+
metric_call = BaryScoreMetric(use_idfs=False)
|
| 246 |
+
|
| 247 |
+
ref = [
|
| 248 |
+
'I like my cakes very much',
|
| 249 |
+
'I hate these cakes!']
|
| 250 |
+
hypothesis = ['I like my cakes very much',
|
| 251 |
+
'I like my cakes very much']
|
| 252 |
+
|
| 253 |
+
metric_call.prepare_idfs(ref, hypothesis)
|
| 254 |
+
final_preds = metric_call.evaluate_batch(ref, hypothesis)
|
| 255 |
+
print(final_preds)
|