Airflow-DAG / app.py
mahesh1209's picture
Create app.py
c60591b verified
raw
history blame contribute delete
990 Bytes
import gradio as gr
from datetime import datetime
import time
# Simulated Airflow DAG steps
def extract():
time.sleep(1)
return {"data": ["apple", "banana", "cherry"], "timestamp": datetime.now().isoformat()}
def transform(data):
time.sleep(1)
return [item.upper() for item in data]
def load(data):
time.sleep(1)
return f"Loaded {len(data)} items into target system at {datetime.now().isoformat()}"
# DAG runner
def run_pipeline():
log = []
extracted = extract()
log.append(f"βœ… Extracted: {extracted['data']} at {extracted['timestamp']}")
transformed = transform(extracted["data"])
log.append(f"πŸ”„ Transformed: {transformed}")
result = load(transformed)
log.append(f"πŸ“¦ Load Result: {result}")
return "\n".join(log)
# Gradio UI
demo = gr.Interface(fn=run_pipeline, inputs=[], outputs="text", title="Airflow-style ETL Pipeline", description="Simulated DAG with Extract β†’ Transform β†’ Load")
demo.launch()