mahesh1209 commited on
Commit
ad88b39
ยท
verified ยท
1 Parent(s): ba9141f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -9
app.py CHANGED
@@ -1,14 +1,13 @@
1
- # incident_bot.py
2
  import gradio as gr
3
- from langchain.embeddings import HuggingFaceEmbeddings
4
  from langchain.vectorstores import FAISS
5
  from langchain.llms import HuggingFacePipeline
6
  from langchain.chains import RetrievalQA
7
- from langchain.document_loaders import TextLoader
8
  from langchain.text_splitter import CharacterTextSplitter
9
  from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
10
 
11
- # ๐Ÿ”น Load alerts/logs dataset inline
12
  sample_logs = """
13
  [ERROR] Disk usage exceeded 90% on node-3
14
  [WARNING] High memory usage detected on node-2
@@ -25,10 +24,10 @@ docs = text_splitter.create_documents([sample_logs])
25
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
26
  db = FAISS.from_documents(docs, embeddings)
27
 
28
- # ๐Ÿ”น Load Mistral 7B Instruct (CPU-friendly)
29
- model_id = "mistralai/Mistral-7B-Instruct-v0.1"
30
  tokenizer = AutoTokenizer.from_pretrained(model_id)
31
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
32
  llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
33
  llm = HuggingFacePipeline(pipeline=llm_pipeline)
34
 
@@ -37,7 +36,6 @@ qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
37
 
38
  # ๐Ÿ”น Gradio chatbot UI
39
  def chat(query):
40
- response = qa_chain.run(query)
41
- return response
42
 
43
  gr.ChatInterface(chat, title="Incident RCA Bot ๐Ÿšจ", description="Ask about logs, errors, and root causes").launch()
 
1
+ # app.py
2
  import gradio as gr
3
+ from langchain_community.embeddings import HuggingFaceEmbeddings
4
  from langchain.vectorstores import FAISS
5
  from langchain.llms import HuggingFacePipeline
6
  from langchain.chains import RetrievalQA
 
7
  from langchain.text_splitter import CharacterTextSplitter
8
  from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
9
 
10
+ # ๐Ÿ”น Sample logs (inline dataset)
11
  sample_logs = """
12
  [ERROR] Disk usage exceeded 90% on node-3
13
  [WARNING] High memory usage detected on node-2
 
24
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
25
  db = FAISS.from_documents(docs, embeddings)
26
 
27
+ # ๐Ÿ”น Load TinyLlama (fast + CPU-friendly)
28
+ model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
29
  tokenizer = AutoTokenizer.from_pretrained(model_id)
30
+ model = AutoModelForCausalLM.from_pretrained(model_id)
31
  llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
32
  llm = HuggingFacePipeline(pipeline=llm_pipeline)
33
 
 
36
 
37
  # ๐Ÿ”น Gradio chatbot UI
38
  def chat(query):
39
+ return qa_chain.run(query)
 
40
 
41
  gr.ChatInterface(chat, title="Incident RCA Bot ๐Ÿšจ", description="Ask about logs, errors, and root causes").launch()