Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
-
#
|
| 2 |
import gradio as gr
|
| 3 |
-
from
|
| 4 |
from langchain.vectorstores import FAISS
|
| 5 |
from langchain.llms import HuggingFacePipeline
|
| 6 |
from langchain.chains import RetrievalQA
|
| 7 |
-
from langchain.document_loaders import TextLoader
|
| 8 |
from langchain.text_splitter import CharacterTextSplitter
|
| 9 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
-
# ๐น
|
| 12 |
sample_logs = """
|
| 13 |
[ERROR] Disk usage exceeded 90% on node-3
|
| 14 |
[WARNING] High memory usage detected on node-2
|
|
@@ -25,10 +24,10 @@ docs = text_splitter.create_documents([sample_logs])
|
|
| 25 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 26 |
db = FAISS.from_documents(docs, embeddings)
|
| 27 |
|
| 28 |
-
# ๐น Load
|
| 29 |
-
model_id = "
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 31 |
-
model = AutoModelForCausalLM.from_pretrained(model_id
|
| 32 |
llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
|
| 33 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
| 34 |
|
|
@@ -37,7 +36,6 @@ qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
|
|
| 37 |
|
| 38 |
# ๐น Gradio chatbot UI
|
| 39 |
def chat(query):
|
| 40 |
-
|
| 41 |
-
return response
|
| 42 |
|
| 43 |
gr.ChatInterface(chat, title="Incident RCA Bot ๐จ", description="Ask about logs, errors, and root causes").launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 4 |
from langchain.vectorstores import FAISS
|
| 5 |
from langchain.llms import HuggingFacePipeline
|
| 6 |
from langchain.chains import RetrievalQA
|
|
|
|
| 7 |
from langchain.text_splitter import CharacterTextSplitter
|
| 8 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 9 |
|
| 10 |
+
# ๐น Sample logs (inline dataset)
|
| 11 |
sample_logs = """
|
| 12 |
[ERROR] Disk usage exceeded 90% on node-3
|
| 13 |
[WARNING] High memory usage detected on node-2
|
|
|
|
| 24 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 25 |
db = FAISS.from_documents(docs, embeddings)
|
| 26 |
|
| 27 |
+
# ๐น Load TinyLlama (fast + CPU-friendly)
|
| 28 |
+
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 31 |
llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
|
| 32 |
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
| 33 |
|
|
|
|
| 36 |
|
| 37 |
# ๐น Gradio chatbot UI
|
| 38 |
def chat(query):
|
| 39 |
+
return qa_chain.run(query)
|
|
|
|
| 40 |
|
| 41 |
gr.ChatInterface(chat, title="Incident RCA Bot ๐จ", description="Ask about logs, errors, and root causes").launch()
|