Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.model_selection import train_test_split | |
| import gradio as gr | |
| # β Load inline dataset | |
| def load_data(): | |
| csv_data = """area,bedrooms,age,price | |
| 1000,3,10,500000 | |
| 1500,4,5,750000 | |
| 800,2,20,300000 | |
| 1200,3,15,450000 | |
| 1600,4,7,800000 | |
| """ | |
| from io import StringIO | |
| return pd.read_csv(StringIO(csv_data)) | |
| # β Train model | |
| def train_model(): | |
| df = load_data() | |
| X = df[["area", "bedrooms", "age"]] | |
| y = df["price"] | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) | |
| model = LinearRegression() | |
| model.fit(X_train, y_train) | |
| return model | |
| def predict_price(model, area, bedrooms, age): | |
| return model.predict([[area, bedrooms, age]])[0] | |
| model = train_model() | |
| # β Gradio UI function | |
| def gradio_predict(area, bedrooms, age): | |
| price = predict_price(model, area, bedrooms, age) | |
| return f"π Estimated House Price: βΉ{round(price, 2):,.0f}" | |
| # β Launch Gradio interface | |
| demo = gr.Interface( | |
| fn=gradio_predict, | |
| inputs=[ | |
| gr.Number(label="Area (sq ft)", value=1200), | |
| gr.Number(label="Bedrooms", value=3), | |
| gr.Number(label="Age of House (years)", value=10) | |
| ], | |
| outputs="text", | |
| title="π House Price Predictor", | |
| description="Enter house details to predict price using a trained ML model." | |
| ) | |
| demo.launch() | |