Update app.py
Browse files
app.py
CHANGED
|
@@ -4,15 +4,13 @@ from transformers import AutoTokenizer, AutoModel, pipeline
|
|
| 4 |
from torch import nn
|
| 5 |
|
| 6 |
st.markdown("### Articles classificator.")
|
| 7 |
-
# st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 8 |
|
| 9 |
@st.cache(allow_output_mutation=True)
|
| 10 |
-
def
|
| 11 |
-
model_name = '
|
| 12 |
-
# return AutoModel.from_pretrained(model_name), AutoTokenizer.from_pretrained(model_name)
|
| 13 |
return AutoTokenizer.from_pretrained(model_name)
|
| 14 |
|
| 15 |
-
tokenizer =
|
| 16 |
|
| 17 |
class devops_model(nn.Module):
|
| 18 |
def __init__(self):
|
|
@@ -28,12 +26,12 @@ class devops_model(nn.Module):
|
|
| 28 |
)
|
| 29 |
|
| 30 |
def forward(self, train_batch):
|
| 31 |
-
emb = self.bert(**train_batch)['
|
| 32 |
return self.fc(emb)
|
| 33 |
|
| 34 |
@st.cache
|
| 35 |
def LoadModel():
|
| 36 |
-
return torch.load('
|
| 37 |
|
| 38 |
model = LoadModel()
|
| 39 |
|
|
|
|
| 4 |
from torch import nn
|
| 5 |
|
| 6 |
st.markdown("### Articles classificator.")
|
|
|
|
| 7 |
|
| 8 |
@st.cache(allow_output_mutation=True)
|
| 9 |
+
def get_tokenizer():
|
| 10 |
+
model_name = 'microsoft/deberta-v3-small'
|
|
|
|
| 11 |
return AutoTokenizer.from_pretrained(model_name)
|
| 12 |
|
| 13 |
+
tokenizer = get_tokenizer()
|
| 14 |
|
| 15 |
class devops_model(nn.Module):
|
| 16 |
def __init__(self):
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
def forward(self, train_batch):
|
| 29 |
+
emb = self.bert(**train_batch)['last_hidden_state'].mean(axis=1)
|
| 30 |
return self.fc(emb)
|
| 31 |
|
| 32 |
@st.cache
|
| 33 |
def LoadModel():
|
| 34 |
+
return torch.load('model_full.pt', map_location=torch.device('cpu'))
|
| 35 |
|
| 36 |
model = LoadModel()
|
| 37 |
|