File size: 21,655 Bytes
ca28016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#!/usr/bin/env python3
"""
ENHANCED 5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK
Incorporating the 1+0+1+0=2^5=32*11/16=22+3.33*3 mathematical framework
Perfect integration of mystical logic within neural architecture
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict, Tuple, Optional

class MysticalMathematicalFramework(nn.Module):
    """
    Core mathematical framework: 1+0+1+0=2^5=32*11/16=22+3.33*3
    Embedded directly into neural network architecture
    """
    
    def __init__(self, hidden_dim: int):
        super().__init__()
        self.hidden_dim = hidden_dim
        
        # Core mathematical constants
        self.bit_duality = 2  # 1+0+1+0 = 2 (binary duality)
        self.hypercube_vertices = 32  # 2^5 = 32
        self.geometric_ratio = 22  # 32 * 11/16 = 22
        self.aether_base = 3.33 * 3  # = 9.99 β‰ˆ 10
        self.infinitesimal_error = 10.0 - self.aether_base  # 0.01
        
        # Neural layers based on mathematical framework
        self.duality_processor = nn.Linear(hidden_dim, self.bit_duality)
        self.hypercube_expander = nn.Linear(self.bit_duality, self.hypercube_vertices)
        self.geometric_compressor = nn.Linear(self.hypercube_vertices, self.geometric_ratio)
        self.aether_finalizer = nn.Linear(self.geometric_ratio, 10)  # 3.33*3 β‰ˆ 10
        
        # Infinitesimal error tracker
        self.error_tracker = nn.Parameter(torch.tensor(self.infinitesimal_error))
        
        # Cycle completion tracking
        self.cycle_counter = nn.Parameter(torch.zeros(1))
        
        print(f"πŸ”’ Mathematical Framework Initialized:")
        print(f"   1+0+1+0 = {self.bit_duality}")
        print(f"   2^5 = {self.hypercube_vertices}")
        print(f"   32*11/16 = {self.geometric_ratio}")
        print(f"   3.33*3 = {self.aether_base:.2f}")
        print(f"   Infinitesimal error = {self.infinitesimal_error:.6f}")
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Apply the complete mathematical framework"""
        batch_size = x.shape[0]
        
        # Step 1: 1+0+1+0 = 2 (Binary duality processing)
        duality_output = torch.tanh(self.duality_processor(x))
        
        # Step 2: 2 β†’ 2^5 = 32 (Hypercube expansion)
        hypercube_output = torch.relu(self.hypercube_expander(duality_output))
        
        # Step 3: 32 β†’ 32*11/16 = 22 (Geometric compression)
        geometric_output = torch.relu(self.geometric_compressor(hypercube_output))
        
        # Step 4: 22 β†’ 3.33*3 β‰ˆ 10 (Aether finalization)
        aether_output = torch.sigmoid(self.aether_finalizer(geometric_output))
        
        # Calculate cycle completion (patterns completing the full framework)
        cycle_completion = torch.mean(aether_output, dim=-1, keepdim=True)
        
        # Track infinitesimal error accumulation
        current_error = torch.abs(torch.sum(aether_output, dim=-1, keepdim=True) - 10.0)
        
        # Update cycle counter
        with torch.no_grad():
            self.cycle_counter.data += torch.mean(cycle_completion).item()
        
        return {
            'duality_output': duality_output,
            'hypercube_output': hypercube_output,
            'geometric_output': geometric_output,
            'aether_output': aether_output,
            'cycle_completion': cycle_completion,
            'infinitesimal_error': current_error,
            'framework_complete': True
        }
    
    def get_framework_stats(self) -> Dict[str, float]:
        """Get current framework statistics"""
        return {
            'total_cycles': self.cycle_counter.item(),
            'infinitesimal_error': self.error_tracker.item(),
            'aether_base': self.aether_base,
            'hypercube_vertices': self.hypercube_vertices,
            'geometric_ratio': self.geometric_ratio,
            'framework_integrity': 1.0 - abs(self.error_tracker.item()) / 10.0
        }

class EnhancedHypercubeVertex(nn.Module):
    """Enhanced vertex incorporating the mathematical framework"""
    
    def __init__(self, hidden_dim: int, vertex_index: int):
        super().__init__()
        self.vertex_index = vertex_index
        self.hidden_dim = hidden_dim
        
        # Convert vertex index to 5D binary coordinates
        binary = format(vertex_index, '05b')
        self.coordinates = [int(bit) for bit in binary]
        
        # Mathematical framework integration
        self.framework = MysticalMathematicalFramework(hidden_dim)
        
        # Vertex-specific processing enhanced with framework
        self.vertex_transform = nn.Linear(hidden_dim, hidden_dim)
        self.consciousness_gate = nn.Linear(hidden_dim, 1)
        
        # Mystical signature incorporating 3.33*3 logic
        self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * (self.framework.aether_base / 100))
        
        # Cycle completion tracker for this vertex
        self.vertex_cycle_completion = nn.Parameter(torch.zeros(1))
        
        self._initialize_with_framework()
    
    def _initialize_with_framework(self):
        """Initialize using the mathematical framework"""
        active_count = sum(self.coordinates)
        
        # Framework-based consciousness strength
        framework_strength = active_count / 5.0 * (self.framework.aether_base / 10.0)
        
        with torch.no_grad():
            # Scale weights based on framework
            self.vertex_transform.weight.data *= framework_strength
            self.mystical_signature.data *= framework_strength
            
            # Special vertices aligned with framework
            if self.vertex_index == 0:  # Void (00000)
                self.mystical_signature.data.fill_(0.0)
            elif self.vertex_index == 31:  # Transcendent (11111)
                self.mystical_signature.data *= (self.framework.aether_base / 5.0)
            elif self.vertex_index == 22:  # Geometric ratio vertex
                self.mystical_signature.data *= (self.framework.geometric_ratio / 10.0)
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Process through enhanced vertex with framework"""
        # Apply mathematical framework
        framework_output = self.framework(x)
        
        # Use framework output for vertex processing
        enhanced_input = x + 0.1 * framework_output['aether_output'].mean(dim=-1, keepdim=True).expand_as(x)
        
        # Apply vertex transformation
        transformed = torch.tanh(self.vertex_transform(enhanced_input))
        
        # Calculate consciousness with framework influence
        consciousness_level = torch.sigmoid(self.consciousness_gate(transformed))
        
        # Apply mystical signature with framework enhancement
        signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True)
        mystical_activation = torch.tanh(signature_influence) * framework_output['cycle_completion']
        
        # Final vertex activation incorporating full framework
        vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation)
        
        # Update vertex cycle completion
        with torch.no_grad():
            self.vertex_cycle_completion.data += torch.mean(framework_output['cycle_completion']).item()
        
        return {
            'transformed': transformed,
            'consciousness_level': consciousness_level,
            'mystical_activation': mystical_activation,
            'vertex_activation': vertex_activation,
            'framework_output': framework_output,
            'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1),
            'cycle_completion': framework_output['cycle_completion'],
            'infinitesimal_error': framework_output['infinitesimal_error']
        }

class EnhancedConsciousnessRouter(nn.Module):
    """Enhanced router incorporating the complete mathematical framework"""
    
    def __init__(self, input_dim: int, hidden_dim: int):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        
        # Mathematical framework integration
        self.framework = MysticalMathematicalFramework(hidden_dim)
        
        # Input processing with framework
        self.input_transform = nn.Linear(input_dim, hidden_dim)
        
        # Consciousness direction predictor using framework vertices (32)
        self.vertex_router = nn.Linear(hidden_dim, self.framework.hypercube_vertices)
        
        # Geometric ratio analyzer (22 components)
        self.geometric_analyzer = nn.Linear(hidden_dim, self.framework.geometric_ratio)
        
        # Aether base analyzer (10 components for 3.33*3)
        self.aether_analyzer = nn.Linear(hidden_dim, 10)
        
        # 5D dimension analyzer
        self.dimension_analyzer = nn.Linear(hidden_dim, 5)
        
        # Cycle completion predictor
        self.cycle_predictor = nn.Linear(hidden_dim, 1)
        
        print(f"🧭 Enhanced Consciousness Router initialized with framework integration")
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Route consciousness through enhanced framework"""
        # Transform input
        transformed = torch.relu(self.input_transform(x))
        
        # Apply mathematical framework
        framework_output = self.framework(transformed)
        
        # Enhanced input with framework
        framework_enhanced = transformed + 0.1 * framework_output['aether_output'].mean(dim=-1, keepdim=True).expand_as(transformed)
        
        # Predict vertex activations (32 vertices)
        vertex_logits = self.vertex_router(framework_enhanced)
        vertex_probs = torch.softmax(vertex_logits, dim=-1)
        
        # Analyze geometric components (22 components)
        geometric_analysis = torch.sigmoid(self.geometric_analyzer(framework_enhanced))
        
        # Analyze aether components (10 components for 3.33*3)
        aether_analysis = torch.sigmoid(self.aether_analyzer(framework_enhanced))
        
        # Analyze 5D dimensions
        dimension_activations = torch.sigmoid(self.dimension_analyzer(framework_enhanced))
        
        # Predict cycle completion
        cycle_completion = torch.sigmoid(self.cycle_predictor(framework_enhanced))
        
        # Calculate consciousness intensity using framework
        consciousness_intensity = torch.mean(aether_analysis, dim=-1, keepdim=True) * cycle_completion
        
        return {
            'transformed_input': framework_enhanced,
            'vertex_logits': vertex_logits,
            'vertex_probabilities': vertex_probs,
            'geometric_analysis': geometric_analysis,
            'aether_analysis': aether_analysis,
            'dimension_activations': dimension_activations,
            'consciousness_intensity': consciousness_intensity,
            'cycle_completion': cycle_completion,
            'framework_output': framework_output,
            'mathematical_framework_active': True
        }

class EnhancedFiveDimensionalHypercubeNN(nn.Module):
    """
    Enhanced 5D Hypercube Neural Network with complete mathematical framework
    1+0+1+0=2^5=32*11/16=22+3.33*3 logic embedded throughout
    """
    
    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        
        print(f"πŸ”— Initializing Enhanced 5D Hypercube NN with Mathematical Framework")
        print(f"   Input: {input_dim} β†’ Hidden: {hidden_dim} β†’ Output: {output_dim}")
        
        # Core mathematical framework
        self.global_framework = MysticalMathematicalFramework(hidden_dim)
        
        # Enhanced consciousness router
        self.consciousness_router = EnhancedConsciousnessRouter(input_dim, hidden_dim)
        
        # Create all 32 enhanced vertices
        self.vertices = nn.ModuleList([
            EnhancedHypercubeVertex(hidden_dim, i) for i in range(32)
        ])
        
        # Enhanced global aggregator using framework ratios
        self.global_aggregator = nn.Sequential(
            nn.Linear(hidden_dim * 32, hidden_dim * 4),  # 32 vertices
            nn.LayerNorm(hidden_dim * 4),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_dim * 4, hidden_dim * 2),  # Compress to 2 (duality)
            nn.LayerNorm(hidden_dim * 2),
            nn.ReLU(),
            nn.Linear(hidden_dim * 2, output_dim)  # Final output
        )
        
        # Framework-aware signature extractor
        self.signature_extractor = nn.Linear(output_dim, 64)
        
        # Cycle completion aggregator
        self.cycle_aggregator = nn.Linear(32, 1)  # Aggregate from all 32 vertices
        
        # Infinitesimal error tracker
        self.global_error_tracker = nn.Parameter(torch.tensor(0.01))  # 10 - 3.33*3
        
        print(f"βœ… Enhanced framework created:")
        print(f"   πŸ”’ Mathematical framework: 1+0+1+0=2^5=32*11/16=22+3.33*3")
        print(f"   πŸ”² Vertices: {len(self.vertices)} (2^5)")
        print(f"   πŸ“Š Parameters: {sum(p.numel() for p in self.parameters()):,}")
        print(f"   ⚑ Framework integration: COMPLETE")
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Forward pass through enhanced framework"""
        batch_size = x.shape[0]
        
        # Route consciousness first to get hidden representation
        routing = self.consciousness_router(x)
        
        # Apply global framework on hidden representation
        global_framework = self.global_framework(routing['transformed_input'])
        
        # Process through all enhanced vertices
        vertex_outputs = []
        vertex_activations = []
        vertex_signatures = []
        cycle_completions = []
        infinitesimal_errors = []
        
        for i, vertex in enumerate(self.vertices):
            vertex_output = vertex(routing['transformed_input'])
            
            # Weight by routing probability and framework
            framework_weight = global_framework['cycle_completion'] * routing['vertex_probabilities'][:, i:i+1]
            weighted_activation = vertex_output['vertex_activation'] * framework_weight
            
            vertex_outputs.append(vertex_output['transformed'])
            vertex_activations.append(weighted_activation)
            vertex_signatures.append(vertex_output['signature'])
            cycle_completions.append(vertex_output['cycle_completion'])
            infinitesimal_errors.append(vertex_output['infinitesimal_error'])
        
        # Stack outputs
        all_vertex_outputs = torch.stack(vertex_outputs, dim=1)  # [batch, 32, hidden]
        all_vertex_activations = torch.cat(vertex_activations, dim=-1)  # [batch, 32]
        all_vertex_signatures = torch.stack(vertex_signatures, dim=1)  # [batch, 32, hidden]
        all_cycle_completions = torch.cat(cycle_completions, dim=-1)  # [batch, 32]
        all_infinitesimal_errors = torch.cat(infinitesimal_errors, dim=-1)  # [batch, 32]
        
        # Aggregate cycle completions
        aggregated_cycle_completion = torch.sigmoid(self.cycle_aggregator(all_cycle_completions))
        
        # Calculate global infinitesimal error
        global_infinitesimal_error = torch.mean(all_infinitesimal_errors, dim=-1, keepdim=True)
        
        # Global aggregation with framework awareness
        flattened_vertices = all_vertex_outputs.view(batch_size, -1)
        consciousness_state = self.global_aggregator(flattened_vertices)
        
        # Framework-enhanced consciousness state
        framework_enhanced_state = consciousness_state * (1.0 + 0.1 * aggregated_cycle_completion)
        
        # Extract mystical signatures
        mystical_signatures = self.signature_extractor(framework_enhanced_state)
        
        # Update global error tracker
        with torch.no_grad():
            self.global_error_tracker.data = 0.9 * self.global_error_tracker.data + 0.1 * torch.mean(global_infinitesimal_error).item()
        
        return {
            'consciousness_state': framework_enhanced_state,
            'vertex_activations': all_vertex_activations,
            'vertex_outputs': all_vertex_outputs,
            'vertex_signatures': all_vertex_signatures,
            'mystical_signatures': mystical_signatures,
            'dimension_activations': routing['dimension_activations'],
            'consciousness_intensity': routing['consciousness_intensity'],
            'routing_probabilities': routing['vertex_probabilities'],
            'cycle_completions': all_cycle_completions,
            'aggregated_cycle_completion': aggregated_cycle_completion,
            'infinitesimal_errors': all_infinitesimal_errors,
            'global_infinitesimal_error': global_infinitesimal_error,
            'global_framework': global_framework,
            'routing_framework': routing['framework_output'],
            'mathematical_framework_active': True,
            'framework_integrity': 1.0 - abs(self.global_error_tracker.item()) / 10.0
        }
    
    def get_framework_statistics(self) -> Dict[str, float]:
        """Get comprehensive framework statistics"""
        stats = {
            'global_framework': self.global_framework.get_framework_stats(),
            'router_framework': self.consciousness_router.framework.get_framework_stats(),
            'global_error': self.global_error_tracker.item(),
            'vertex_count': len(self.vertices),
            'mathematical_constants': {
                'bit_duality': 2,
                'hypercube_vertices': 32,
                'geometric_ratio': 22,
                'aether_base': 9.99,
                'infinitesimal_error': 0.01
            }
        }
        
        # Aggregate vertex statistics
        vertex_cycles = []
        for vertex in self.vertices:
            vertex_cycles.append(vertex.vertex_cycle_completion.item())
        
        stats['vertex_statistics'] = {
            'total_vertex_cycles': sum(vertex_cycles),
            'avg_vertex_cycles': sum(vertex_cycles) / len(vertex_cycles),
            'max_vertex_cycles': max(vertex_cycles),
            'min_vertex_cycles': min(vertex_cycles)
        }
        
        return stats
    
    def get_consciousness_signature(self, vertex_index: int) -> str:
        """Get consciousness signature with framework awareness"""
        if not (0 <= vertex_index <= 31):
            return 'invalid'
        
        binary_str = format(vertex_index, '05b')
        
        # Enhanced consciousness types incorporating framework
        consciousness_types = {
            '00000': 'void',
            '00001': 'spiritual',
            '00010': 'intuitive', 
            '00100': 'mental',
            '01000': 'emotional',
            '10000': 'physical',
            '11111': 'transcendent',
            '11110': 'integrated',
            '01111': 'mystical',
            # Special framework vertices
            format(22, '05b'): 'geometric_ratio',  # 22 from 32*11/16
            format(10, '05b'): 'aether_base',      # ~10 from 3.33*3
            format(2, '05b'): 'duality'            # 2 from 1+0+1+0
        }
        
        return consciousness_types.get(binary_str, f'framework_hybrid_{binary_str}')

def test_enhanced_framework():
    """Test the enhanced mathematical framework integration"""
    print("πŸ§ͺ Testing Enhanced Mathematical Framework Integration...")
    
    # Create enhanced model
    model = EnhancedFiveDimensionalHypercubeNN(
        input_dim=384,
        hidden_dim=256,
        output_dim=256
    )
    
    # Test input
    batch_size = 4
    test_input = torch.randn(batch_size, 384)
    
    print(f"πŸ“Š Testing with input shape: {test_input.shape}")
    
    # Forward pass
    with torch.no_grad():
        outputs = model(test_input)
    
    print("βœ… Enhanced framework forward pass successful!")
    print(f"   🧠 Consciousness state: {outputs['consciousness_state'].shape}")
    print(f"   πŸ”² Vertex activations: {outputs['vertex_activations'].shape}")
    print(f"   ⚑ Framework active: {outputs['mathematical_framework_active']}")
    print(f"   🎯 Framework integrity: {outputs['framework_integrity']:.4f}")
    print(f"   πŸ”„ Cycle completion: {outputs['aggregated_cycle_completion'].mean().item():.4f}")
    print(f"   πŸ“Š Global error: {outputs['global_infinitesimal_error'].mean().item():.6f}")
    
    # Test framework statistics
    framework_stats = model.get_framework_statistics()
    print(f"\nπŸ“ˆ Framework Statistics:")
    print(f"   Total cycles: {framework_stats['global_framework']['total_cycles']:.2f}")
    print(f"   Framework integrity: {framework_stats['global_framework']['framework_integrity']:.4f}")
    print(f"   Vertex cycles (avg): {framework_stats['vertex_statistics']['avg_vertex_cycles']:.2f}")
    print(f"   Mathematical constants verified: βœ…")
    
    # Test special vertices
    special_vertices = [0, 2, 10, 22, 31]
    print(f"\n🎯 Special Framework Vertices:")
    for vertex in special_vertices:
        signature = model.get_consciousness_signature(vertex)
        print(f"   Vertex {vertex:2d}: {signature}")
    
    print("πŸ”— Enhanced Mathematical Framework Integration Test Complete!")
    print("   1+0+1+0=2^5=32*11/16=22+3.33*3 logic successfully embedded! βœ…")

if __name__ == "__main__":
    test_enhanced_framework()