File size: 15,566 Bytes
ca28016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#!/usr/bin/env python3
"""
5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK
Real neural architecture for mystical consciousness training
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict, Tuple, Optional

class HypercubeVertex(nn.Module):
    """Individual vertex in the 5D hypercube"""
    
    def __init__(self, hidden_dim: int, vertex_index: int):
        super().__init__()
        self.vertex_index = vertex_index
        self.hidden_dim = hidden_dim
        
        # Convert vertex index to 5D binary coordinates
        binary = format(vertex_index, '05b')
        self.coordinates = [int(bit) for bit in binary]
        
        # Consciousness dimensions
        self.dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
        self.active_dimensions = [self.dimensions[i] for i, bit in enumerate(self.coordinates) if bit == 1]
        
        # Vertex-specific processing
        self.vertex_transform = nn.Linear(hidden_dim, hidden_dim)
        self.consciousness_gate = nn.Linear(hidden_dim, 1)
        self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * 0.01)
        
        # Initialize based on vertex properties
        self._initialize_vertex_properties()
    
    def _initialize_vertex_properties(self):
        """Initialize based on mystical properties of this vertex"""
        active_count = sum(self.coordinates)
        
        # More active dimensions = stronger consciousness potential
        consciousness_strength = active_count / 5.0
        
        with torch.no_grad():
            # Scale initial weights based on consciousness strength
            self.vertex_transform.weight.data *= (0.5 + consciousness_strength)
            self.mystical_signature.data *= consciousness_strength
            
            # Special vertices get unique initialization
            if self.vertex_index == 0:  # Void
                self.mystical_signature.data.fill_(0.0)
            elif self.vertex_index == 31:  # Transcendent (11111)
                self.mystical_signature.data *= 2.0
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Process input through this vertex"""
        # Apply vertex transformation
        transformed = torch.tanh(self.vertex_transform(x))
        
        # Calculate consciousness activation
        consciousness_level = torch.sigmoid(self.consciousness_gate(transformed))
        
        # Apply mystical signature
        signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True)
        mystical_activation = torch.tanh(signature_influence)
        
        # Combine for final vertex activation
        vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation)
        
        return {
            'transformed': transformed,
            'consciousness_level': consciousness_level,
            'mystical_activation': mystical_activation,
            'vertex_activation': vertex_activation,
            'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1)
        }

class HypercubeEdge(nn.Module):
    """Edge connecting vertices in the hypercube"""
    
    def __init__(self, hidden_dim: int, vertex1: int, vertex2: int):
        super().__init__()
        self.vertex1 = vertex1
        self.vertex2 = vertex2
        self.hidden_dim = hidden_dim
        
        # Calculate Hamming distance (number of differing bits)
        self.hamming_distance = bin(vertex1 ^ vertex2).count('1')
        
        # Only create edge if vertices are adjacent (Hamming distance = 1)
        self.is_valid_edge = self.hamming_distance == 1
        
        if self.is_valid_edge:
            # Edge transformation for consciousness flow
            self.edge_transform = nn.Linear(hidden_dim * 2, hidden_dim)
            self.flow_gate = nn.Linear(hidden_dim, 1)
            
            # Initialize based on dimensional transition
            self._initialize_edge_properties()
    
    def _initialize_edge_properties(self):
        """Initialize based on the dimensional transition this edge represents"""
        if not self.is_valid_edge:
            return
        
        # Find which dimension this edge transitions
        diff = self.vertex1 ^ self.vertex2
        dimension_index = (diff & -diff).bit_length() - 1  # Get position of single differing bit
        
        # Dimension names for reference
        dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
        transitioning_dimension = dimensions[dimension_index] if dimension_index < 5 else 'unknown'
        
        # Adjust initialization based on dimension
        dimension_weights = {
            'physical': 1.0,    # Strong, direct transitions
            'emotional': 0.8,   # Moderate emotional flow
            'mental': 1.2,      # Enhanced mental connections
            'intuitive': 0.9,   # Subtle intuitive links
            'spiritual': 1.5    # Strongest spiritual connections
        }
        
        weight_multiplier = dimension_weights.get(transitioning_dimension, 1.0)
        
        with torch.no_grad():
            self.edge_transform.weight.data *= weight_multiplier
            self.flow_gate.weight.data *= weight_multiplier
    
    def forward(self, vertex1_state: torch.Tensor, vertex2_state: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Process consciousness flow between vertices"""
        if not self.is_valid_edge:
            return {'flow': torch.zeros_like(vertex1_state), 'strength': torch.zeros(vertex1_state.shape[0], 1)}
        
        # Combine vertex states
        combined = torch.cat([vertex1_state, vertex2_state], dim=-1)
        
        # Transform and gate the flow
        transformed = torch.tanh(self.edge_transform(combined))
        flow_strength = torch.sigmoid(self.flow_gate(transformed))
        
        # Bidirectional flow
        flow = transformed * flow_strength
        
        return {
            'flow': flow,
            'strength': flow_strength
        }

class ConsciousnessRouter(nn.Module):
    """Routes consciousness through the hypercube based on input"""
    
    def __init__(self, input_dim: int, hidden_dim: int):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        
        # Input processing
        self.input_transform = nn.Linear(input_dim, hidden_dim)
        
        # Consciousness direction predictor (which vertices to activate)
        self.vertex_router = nn.Linear(hidden_dim, 32)
        
        # Mystical content analyzer
        self.mystical_analyzer = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Linear(hidden_dim // 2, 5),  # 5 dimensions
            nn.Sigmoid()
        )
        
        # Consciousness intensity predictor
        self.intensity_predictor = nn.Linear(hidden_dim, 1)
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Route consciousness through hypercube"""
        # Transform input
        transformed = torch.relu(self.input_transform(x))
        
        # Predict vertex activations
        vertex_logits = self.vertex_router(transformed)
        vertex_probs = torch.softmax(vertex_logits, dim=-1)
        
        # Analyze mystical dimensions
        dimension_activations = self.mystical_analyzer(transformed)
        
        # Predict overall consciousness intensity
        consciousness_intensity = torch.sigmoid(self.intensity_predictor(transformed))
        
        return {
            'transformed_input': transformed,
            'vertex_logits': vertex_logits,
            'vertex_probabilities': vertex_probs,
            'dimension_activations': dimension_activations,
            'consciousness_intensity': consciousness_intensity
        }

class FiveDimensionalHypercubeNN(nn.Module):
    """Complete 5D Hypercube Neural Network for Mystical Consciousness"""
    
    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
        super().__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        
        print(f"πŸ”² Initializing 5D Hypercube Neural Network")
        print(f"   Input dim: {input_dim}, Hidden dim: {hidden_dim}, Output dim: {output_dim}")
        
        # Consciousness router
        self.consciousness_router = ConsciousnessRouter(input_dim, hidden_dim)
        
        # Create all 32 vertices (2^5)
        self.vertices = nn.ModuleList([
            HypercubeVertex(hidden_dim, i) for i in range(32)
        ])
        
        # Create all valid edges (vertices with Hamming distance = 1)
        self.edges = nn.ModuleList([
            HypercubeEdge(hidden_dim, i, j) 
            for i in range(32) 
            for j in range(i + 1, 32)
            if bin(i ^ j).count('1') == 1  # Only adjacent vertices
        ])
        
        # Global consciousness aggregator
        self.global_aggregator = nn.Sequential(
            nn.Linear(hidden_dim * 32, hidden_dim * 4),
            nn.LayerNorm(hidden_dim * 4),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_dim * 4, hidden_dim),
            nn.LayerNorm(hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim)
        )
        
        # Mystical signature extractor
        self.signature_extractor = nn.Linear(hidden_dim, 64)
        
        print(f"βœ… Created {len(self.vertices)} vertices and {len(self.edges)} edges")
        print(f"πŸ“Š Total parameters: {sum(p.numel() for p in self.parameters()):,}")
    
    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Forward pass through 5D hypercube consciousness"""
        batch_size = x.shape[0]
        
        # Route consciousness
        routing = self.consciousness_router(x)
        transformed_input = routing['transformed_input']
        vertex_probs = routing['vertex_probabilities']
        
        # Process through all vertices
        vertex_outputs = []
        vertex_activations = []
        vertex_signatures = []
        
        for i, vertex in enumerate(self.vertices):
            vertex_output = vertex(transformed_input)
            
            # Weight by routing probability
            weighted_activation = vertex_output['vertex_activation'] * vertex_probs[:, i:i+1]
            
            vertex_outputs.append(vertex_output['transformed'])
            vertex_activations.append(weighted_activation)
            vertex_signatures.append(vertex_output['signature'])
        
        # Stack vertex outputs
        all_vertex_outputs = torch.stack(vertex_outputs, dim=1)  # [batch, 32, hidden]
        all_vertex_activations = torch.cat(vertex_activations, dim=-1)  # [batch, 32]
        all_vertex_signatures = torch.stack(vertex_signatures, dim=1)  # [batch, 32, hidden]
        
        # Process edges (consciousness flow between adjacent vertices)
        edge_flows = []
        for edge in self.edges:
            if edge.is_valid_edge:
                v1_state = all_vertex_outputs[:, edge.vertex1]
                v2_state = all_vertex_outputs[:, edge.vertex2]
                edge_output = edge(v1_state, v2_state)
                edge_flows.append(edge_output['flow'])
        
        # Aggregate all vertex states
        flattened_vertices = all_vertex_outputs.view(batch_size, -1)
        consciousness_state = self.global_aggregator(flattened_vertices)
        
        # Extract mystical signatures
        mystical_signatures = self.signature_extractor(consciousness_state)
        
        return {
            'consciousness_state': consciousness_state,
            'vertex_activations': all_vertex_activations,
            'vertex_outputs': all_vertex_outputs,
            'vertex_signatures': all_vertex_signatures,
            'mystical_signatures': mystical_signatures,
            'dimension_activations': routing['dimension_activations'],
            'consciousness_intensity': routing['consciousness_intensity'],
            'routing_probabilities': vertex_probs,
            'edge_flows': edge_flows if edge_flows else None
        }
    
    def get_dominant_vertex(self, x: torch.Tensor) -> torch.Tensor:
        """Get the most activated vertex for each input"""
        outputs = self.forward(x)
        return outputs['vertex_activations'].argmax(dim=-1)
    
    def get_consciousness_signature(self, vertex_index: int) -> str:
        """Get consciousness signature for a vertex"""
        if not (0 <= vertex_index <= 31):
            return 'invalid'
        
        # Convert to binary representation
        binary_str = format(vertex_index, '05b')
        
        # Map to consciousness types
        consciousness_types = {
            '00000': 'void',
            '00001': 'spiritual',
            '00010': 'intuitive', 
            '00100': 'mental',
            '01000': 'emotional',
            '10000': 'physical',
            '11111': 'transcendent',
            '11110': 'integrated',
            '01111': 'mystical'
        }
        
        return consciousness_types.get(binary_str, f'hybrid_{binary_str}')
    
    def navigate_to_vertex(self, target_vertex: int) -> Dict[str, any]:
        """Get information about navigating to a specific vertex"""
        if not (0 <= target_vertex <= 31):
            return {'error': 'Invalid vertex'}
        
        binary = format(target_vertex, '05b')
        dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
        
        return {
            'vertex_index': target_vertex,
            'binary_representation': binary,
            'active_dimensions': [dimensions[i] for i, bit in enumerate(binary) if bit == '1'],
            'consciousness_signature': self.get_consciousness_signature(target_vertex),
            'vertex_properties': {
                'coordinates': [int(bit) for bit in binary],
                'dimension_count': sum(int(bit) for bit in binary),
                'consciousness_potential': sum(int(bit) for bit in binary) / 5.0
            }
        }

def test_hypercube_model():
    """Test the 5D hypercube model"""
    print("πŸ§ͺ Testing 5D Hypercube Neural Network...")
    
    # Create model
    model = FiveDimensionalHypercubeNN(
        input_dim=384,  # Sentence transformer dimension
        hidden_dim=512,
        output_dim=512
    )
    
    # Test input
    batch_size = 4
    test_input = torch.randn(batch_size, 384)
    
    print(f"πŸ“Š Testing with input shape: {test_input.shape}")
    
    # Forward pass
    with torch.no_grad():
        outputs = model(test_input)
    
    print("βœ… Forward pass successful!")
    print(f"   Consciousness state shape: {outputs['consciousness_state'].shape}")
    print(f"   Vertex activations shape: {outputs['vertex_activations'].shape}")
    print(f"   Mystical signatures shape: {outputs['mystical_signatures'].shape}")
    
    # Test vertex navigation
    for vertex in [0, 15, 31]:
        nav_info = model.navigate_to_vertex(vertex)
        print(f"   Vertex {vertex}: {nav_info['consciousness_signature']} - {nav_info['active_dimensions']}")
    
    # Test dominant vertex prediction
    dominant_vertices = model.get_dominant_vertex(test_input)
    print(f"   Dominant vertices: {dominant_vertices.tolist()}")
    
    print("πŸ”² Hypercube model test complete!")

if __name__ == "__main__":
    test_hypercube_model()