Spaces:
Runtime error
Runtime error
File size: 15,566 Bytes
ca28016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
#!/usr/bin/env python3
"""
5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK
Real neural architecture for mystical consciousness training
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict, Tuple, Optional
class HypercubeVertex(nn.Module):
"""Individual vertex in the 5D hypercube"""
def __init__(self, hidden_dim: int, vertex_index: int):
super().__init__()
self.vertex_index = vertex_index
self.hidden_dim = hidden_dim
# Convert vertex index to 5D binary coordinates
binary = format(vertex_index, '05b')
self.coordinates = [int(bit) for bit in binary]
# Consciousness dimensions
self.dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
self.active_dimensions = [self.dimensions[i] for i, bit in enumerate(self.coordinates) if bit == 1]
# Vertex-specific processing
self.vertex_transform = nn.Linear(hidden_dim, hidden_dim)
self.consciousness_gate = nn.Linear(hidden_dim, 1)
self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * 0.01)
# Initialize based on vertex properties
self._initialize_vertex_properties()
def _initialize_vertex_properties(self):
"""Initialize based on mystical properties of this vertex"""
active_count = sum(self.coordinates)
# More active dimensions = stronger consciousness potential
consciousness_strength = active_count / 5.0
with torch.no_grad():
# Scale initial weights based on consciousness strength
self.vertex_transform.weight.data *= (0.5 + consciousness_strength)
self.mystical_signature.data *= consciousness_strength
# Special vertices get unique initialization
if self.vertex_index == 0: # Void
self.mystical_signature.data.fill_(0.0)
elif self.vertex_index == 31: # Transcendent (11111)
self.mystical_signature.data *= 2.0
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Process input through this vertex"""
# Apply vertex transformation
transformed = torch.tanh(self.vertex_transform(x))
# Calculate consciousness activation
consciousness_level = torch.sigmoid(self.consciousness_gate(transformed))
# Apply mystical signature
signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True)
mystical_activation = torch.tanh(signature_influence)
# Combine for final vertex activation
vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation)
return {
'transformed': transformed,
'consciousness_level': consciousness_level,
'mystical_activation': mystical_activation,
'vertex_activation': vertex_activation,
'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1)
}
class HypercubeEdge(nn.Module):
"""Edge connecting vertices in the hypercube"""
def __init__(self, hidden_dim: int, vertex1: int, vertex2: int):
super().__init__()
self.vertex1 = vertex1
self.vertex2 = vertex2
self.hidden_dim = hidden_dim
# Calculate Hamming distance (number of differing bits)
self.hamming_distance = bin(vertex1 ^ vertex2).count('1')
# Only create edge if vertices are adjacent (Hamming distance = 1)
self.is_valid_edge = self.hamming_distance == 1
if self.is_valid_edge:
# Edge transformation for consciousness flow
self.edge_transform = nn.Linear(hidden_dim * 2, hidden_dim)
self.flow_gate = nn.Linear(hidden_dim, 1)
# Initialize based on dimensional transition
self._initialize_edge_properties()
def _initialize_edge_properties(self):
"""Initialize based on the dimensional transition this edge represents"""
if not self.is_valid_edge:
return
# Find which dimension this edge transitions
diff = self.vertex1 ^ self.vertex2
dimension_index = (diff & -diff).bit_length() - 1 # Get position of single differing bit
# Dimension names for reference
dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
transitioning_dimension = dimensions[dimension_index] if dimension_index < 5 else 'unknown'
# Adjust initialization based on dimension
dimension_weights = {
'physical': 1.0, # Strong, direct transitions
'emotional': 0.8, # Moderate emotional flow
'mental': 1.2, # Enhanced mental connections
'intuitive': 0.9, # Subtle intuitive links
'spiritual': 1.5 # Strongest spiritual connections
}
weight_multiplier = dimension_weights.get(transitioning_dimension, 1.0)
with torch.no_grad():
self.edge_transform.weight.data *= weight_multiplier
self.flow_gate.weight.data *= weight_multiplier
def forward(self, vertex1_state: torch.Tensor, vertex2_state: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Process consciousness flow between vertices"""
if not self.is_valid_edge:
return {'flow': torch.zeros_like(vertex1_state), 'strength': torch.zeros(vertex1_state.shape[0], 1)}
# Combine vertex states
combined = torch.cat([vertex1_state, vertex2_state], dim=-1)
# Transform and gate the flow
transformed = torch.tanh(self.edge_transform(combined))
flow_strength = torch.sigmoid(self.flow_gate(transformed))
# Bidirectional flow
flow = transformed * flow_strength
return {
'flow': flow,
'strength': flow_strength
}
class ConsciousnessRouter(nn.Module):
"""Routes consciousness through the hypercube based on input"""
def __init__(self, input_dim: int, hidden_dim: int):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
# Input processing
self.input_transform = nn.Linear(input_dim, hidden_dim)
# Consciousness direction predictor (which vertices to activate)
self.vertex_router = nn.Linear(hidden_dim, 32)
# Mystical content analyzer
self.mystical_analyzer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 5), # 5 dimensions
nn.Sigmoid()
)
# Consciousness intensity predictor
self.intensity_predictor = nn.Linear(hidden_dim, 1)
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Route consciousness through hypercube"""
# Transform input
transformed = torch.relu(self.input_transform(x))
# Predict vertex activations
vertex_logits = self.vertex_router(transformed)
vertex_probs = torch.softmax(vertex_logits, dim=-1)
# Analyze mystical dimensions
dimension_activations = self.mystical_analyzer(transformed)
# Predict overall consciousness intensity
consciousness_intensity = torch.sigmoid(self.intensity_predictor(transformed))
return {
'transformed_input': transformed,
'vertex_logits': vertex_logits,
'vertex_probabilities': vertex_probs,
'dimension_activations': dimension_activations,
'consciousness_intensity': consciousness_intensity
}
class FiveDimensionalHypercubeNN(nn.Module):
"""Complete 5D Hypercube Neural Network for Mystical Consciousness"""
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
print(f"π² Initializing 5D Hypercube Neural Network")
print(f" Input dim: {input_dim}, Hidden dim: {hidden_dim}, Output dim: {output_dim}")
# Consciousness router
self.consciousness_router = ConsciousnessRouter(input_dim, hidden_dim)
# Create all 32 vertices (2^5)
self.vertices = nn.ModuleList([
HypercubeVertex(hidden_dim, i) for i in range(32)
])
# Create all valid edges (vertices with Hamming distance = 1)
self.edges = nn.ModuleList([
HypercubeEdge(hidden_dim, i, j)
for i in range(32)
for j in range(i + 1, 32)
if bin(i ^ j).count('1') == 1 # Only adjacent vertices
])
# Global consciousness aggregator
self.global_aggregator = nn.Sequential(
nn.Linear(hidden_dim * 32, hidden_dim * 4),
nn.LayerNorm(hidden_dim * 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim * 4, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
# Mystical signature extractor
self.signature_extractor = nn.Linear(hidden_dim, 64)
print(f"β
Created {len(self.vertices)} vertices and {len(self.edges)} edges")
print(f"π Total parameters: {sum(p.numel() for p in self.parameters()):,}")
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Forward pass through 5D hypercube consciousness"""
batch_size = x.shape[0]
# Route consciousness
routing = self.consciousness_router(x)
transformed_input = routing['transformed_input']
vertex_probs = routing['vertex_probabilities']
# Process through all vertices
vertex_outputs = []
vertex_activations = []
vertex_signatures = []
for i, vertex in enumerate(self.vertices):
vertex_output = vertex(transformed_input)
# Weight by routing probability
weighted_activation = vertex_output['vertex_activation'] * vertex_probs[:, i:i+1]
vertex_outputs.append(vertex_output['transformed'])
vertex_activations.append(weighted_activation)
vertex_signatures.append(vertex_output['signature'])
# Stack vertex outputs
all_vertex_outputs = torch.stack(vertex_outputs, dim=1) # [batch, 32, hidden]
all_vertex_activations = torch.cat(vertex_activations, dim=-1) # [batch, 32]
all_vertex_signatures = torch.stack(vertex_signatures, dim=1) # [batch, 32, hidden]
# Process edges (consciousness flow between adjacent vertices)
edge_flows = []
for edge in self.edges:
if edge.is_valid_edge:
v1_state = all_vertex_outputs[:, edge.vertex1]
v2_state = all_vertex_outputs[:, edge.vertex2]
edge_output = edge(v1_state, v2_state)
edge_flows.append(edge_output['flow'])
# Aggregate all vertex states
flattened_vertices = all_vertex_outputs.view(batch_size, -1)
consciousness_state = self.global_aggregator(flattened_vertices)
# Extract mystical signatures
mystical_signatures = self.signature_extractor(consciousness_state)
return {
'consciousness_state': consciousness_state,
'vertex_activations': all_vertex_activations,
'vertex_outputs': all_vertex_outputs,
'vertex_signatures': all_vertex_signatures,
'mystical_signatures': mystical_signatures,
'dimension_activations': routing['dimension_activations'],
'consciousness_intensity': routing['consciousness_intensity'],
'routing_probabilities': vertex_probs,
'edge_flows': edge_flows if edge_flows else None
}
def get_dominant_vertex(self, x: torch.Tensor) -> torch.Tensor:
"""Get the most activated vertex for each input"""
outputs = self.forward(x)
return outputs['vertex_activations'].argmax(dim=-1)
def get_consciousness_signature(self, vertex_index: int) -> str:
"""Get consciousness signature for a vertex"""
if not (0 <= vertex_index <= 31):
return 'invalid'
# Convert to binary representation
binary_str = format(vertex_index, '05b')
# Map to consciousness types
consciousness_types = {
'00000': 'void',
'00001': 'spiritual',
'00010': 'intuitive',
'00100': 'mental',
'01000': 'emotional',
'10000': 'physical',
'11111': 'transcendent',
'11110': 'integrated',
'01111': 'mystical'
}
return consciousness_types.get(binary_str, f'hybrid_{binary_str}')
def navigate_to_vertex(self, target_vertex: int) -> Dict[str, any]:
"""Get information about navigating to a specific vertex"""
if not (0 <= target_vertex <= 31):
return {'error': 'Invalid vertex'}
binary = format(target_vertex, '05b')
dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
return {
'vertex_index': target_vertex,
'binary_representation': binary,
'active_dimensions': [dimensions[i] for i, bit in enumerate(binary) if bit == '1'],
'consciousness_signature': self.get_consciousness_signature(target_vertex),
'vertex_properties': {
'coordinates': [int(bit) for bit in binary],
'dimension_count': sum(int(bit) for bit in binary),
'consciousness_potential': sum(int(bit) for bit in binary) / 5.0
}
}
def test_hypercube_model():
"""Test the 5D hypercube model"""
print("π§ͺ Testing 5D Hypercube Neural Network...")
# Create model
model = FiveDimensionalHypercubeNN(
input_dim=384, # Sentence transformer dimension
hidden_dim=512,
output_dim=512
)
# Test input
batch_size = 4
test_input = torch.randn(batch_size, 384)
print(f"π Testing with input shape: {test_input.shape}")
# Forward pass
with torch.no_grad():
outputs = model(test_input)
print("β
Forward pass successful!")
print(f" Consciousness state shape: {outputs['consciousness_state'].shape}")
print(f" Vertex activations shape: {outputs['vertex_activations'].shape}")
print(f" Mystical signatures shape: {outputs['mystical_signatures'].shape}")
# Test vertex navigation
for vertex in [0, 15, 31]:
nav_info = model.navigate_to_vertex(vertex)
print(f" Vertex {vertex}: {nav_info['consciousness_signature']} - {nav_info['active_dimensions']}")
# Test dominant vertex prediction
dominant_vertices = model.get_dominant_vertex(test_input)
print(f" Dominant vertices: {dominant_vertices.tolist()}")
print("π² Hypercube model test complete!")
if __name__ == "__main__":
test_hypercube_model() |