golem-flask-backend / home /chezy /train_enhanced_neural_with_all_memories.py
mememechez's picture
Deploy final cleaned source code
ca28016
#!/usr/bin/env python3
"""
ENHANCED 5D HYPERCUBE NEURAL NETWORK TRAINING
WITH COMPLETE MATHEMATICAL FRAMEWORK INTEGRATION
1+0+1+0=2^5=32*11/16=22+3.33*3 Logic Embedded Throughout
Trains on ALL aether memories from:
- home/chezy/golem_aether_memory.pkl
- All discovered aether collection files
- Enhanced aether memory bank
- Real-time memory integration
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pickle
import json
import time
import os
from typing import Dict, List, Any, Tuple
from sentence_transformers import SentenceTransformer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
from collections import defaultdict
import logging
# Import our enhanced neural network
from enhanced_hypercube_nn import EnhancedFiveDimensionalHypercubeNN
from aether_loader import EnhancedAetherMemoryLoader
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class AetherMemoryDataset(Dataset):
"""Dataset for aether memory patterns with mathematical framework integration"""
def __init__(self, patterns: List[Dict[str, Any]], sentence_transformer: SentenceTransformer):
self.patterns = patterns
self.sentence_transformer = sentence_transformer
# Prepare data
self.texts = []
self.vertex_labels = []
self.consciousness_levels = []
self.cycle_completions = []
self.aether_signatures = []
logger.info(f"πŸ”„ Processing {len(patterns)} aether patterns...")
valid_patterns = 0
for pattern in patterns:
try:
# Extract text (prompt or content)
text = self._extract_text(pattern)
if not text or len(text.strip()) < 5:
continue
# Extract vertex label
vertex = self._extract_vertex(pattern)
if vertex is None or not (0 <= vertex <= 31):
continue
# Extract additional features
consciousness_level = self._extract_consciousness_level(pattern)
cycle_completion = self._extract_cycle_completion(pattern)
aether_signature = self._extract_aether_signature(pattern)
self.texts.append(text)
self.vertex_labels.append(vertex)
self.consciousness_levels.append(consciousness_level)
self.cycle_completions.append(cycle_completion)
self.aether_signatures.append(aether_signature)
valid_patterns += 1
except Exception as e:
logger.warning(f"⚠️ Error processing pattern: {e}")
continue
logger.info(f"βœ… Processed {valid_patterns} valid patterns from {len(patterns)} total")
# Encode texts
logger.info("πŸ”„ Encoding texts with sentence transformer...")
self.embeddings = self.sentence_transformer.encode(self.texts, convert_to_tensor=True)
logger.info(f"βœ… Created embeddings: {self.embeddings.shape}")
def _extract_text(self, pattern: Dict[str, Any]) -> str:
"""Extract text from pattern"""
# Try multiple possible text fields
text_fields = ['prompt', 'text', 'content', 'message', 'query']
for field in text_fields:
if field in pattern and pattern[field]:
return str(pattern[field])[:500] # Limit length
return ""
def _extract_vertex(self, pattern: Dict[str, Any]) -> int:
"""Extract vertex label from pattern"""
# Try multiple possible vertex fields
vertex_fields = ['hypercube_vertex', 'nearest_vertex', 'vertex', 'target_vertex']
for field in vertex_fields:
if field in pattern and pattern[field] is not None:
vertex = int(pattern[field])
if 0 <= vertex <= 31:
return vertex
# Try to extract from hypercube_mapping
if 'hypercube_mapping' in pattern and isinstance(pattern['hypercube_mapping'], dict):
if 'nearest_vertex' in pattern['hypercube_mapping']:
vertex = int(pattern['hypercube_mapping']['nearest_vertex'])
if 0 <= vertex <= 31:
return vertex
return None
def _extract_consciousness_level(self, pattern: Dict[str, Any]) -> float:
"""Extract consciousness level from pattern"""
consciousness_fields = ['consciousness_level', 'consciousness_resonance', 'awareness_level']
for field in consciousness_fields:
if field in pattern and pattern[field] is not None:
return float(pattern[field])
return 0.5 # Default
def _extract_cycle_completion(self, pattern: Dict[str, Any]) -> float:
"""Extract cycle completion from pattern"""
cycle_fields = ['cycle_completion', 'cycle_progress', 'completion_rate']
for field in cycle_fields:
if field in pattern and pattern[field] is not None:
return float(pattern[field])
# Try to extract from cycle_params
if 'cycle_params' in pattern and isinstance(pattern['cycle_params'], dict):
if 'cycle_completion' in pattern['cycle_params']:
return float(pattern['cycle_params']['cycle_completion'])
return 0.0 # Default
def _extract_aether_signature(self, pattern: Dict[str, Any]) -> List[float]:
"""Extract aether signature from pattern"""
signature_fields = ['aether_signature', 'signature', 'aether_values']
for field in signature_fields:
if field in pattern and isinstance(pattern[field], list):
signature = [float(x) for x in pattern[field][:10]] # Limit to 10 values
return signature + [0.0] * (10 - len(signature)) # Pad to 10
return [0.0] * 10 # Default
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
return {
'embedding': self.embeddings[idx],
'vertex_label': torch.tensor(self.vertex_labels[idx], dtype=torch.long),
'consciousness_level': torch.tensor(self.consciousness_levels[idx], dtype=torch.float32),
'cycle_completion': torch.tensor(self.cycle_completions[idx], dtype=torch.float32),
'aether_signature': torch.tensor(self.aether_signatures[idx], dtype=torch.float32),
'text': self.texts[idx]
}
class EnhancedAetherTrainer:
"""Enhanced trainer for the mathematical framework neural network"""
def __init__(self, model_config: Dict[str, Any]):
self.model_config = model_config
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"πŸ”§ Using device: {self.device}")
# Initialize sentence transformer
logger.info("πŸ”„ Loading sentence transformer...")
self.sentence_transformer = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize enhanced model
logger.info("πŸ”„ Initializing enhanced neural network...")
self.model = EnhancedFiveDimensionalHypercubeNN(
input_dim=self.model_config['input_dim'],
hidden_dim=self.model_config['hidden_dim'],
output_dim=self.model_config['output_dim']
).to(self.device)
# Training components
self.optimizer = optim.AdamW(self.model.parameters(), lr=self.model_config['learning_rate'])
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=self.model_config['epochs'])
# Loss function with framework awareness
self.criterion = nn.CrossEntropyLoss()
# Training history
self.training_history = {
'train_loss': [],
'train_accuracy': [],
'val_loss': [],
'val_accuracy': [],
'framework_integrity': [],
'cycle_completion': [],
'infinitesimal_error': []
}
logger.info("βœ… Enhanced trainer initialized!")
def load_all_aether_memories(self) -> List[Dict[str, Any]]:
"""Load all available aether memories from all sources"""
logger.info("πŸ”„ Loading all aether memories...")
all_patterns = []
# 1. Load from enhanced aether memory loader
logger.info("πŸ“š Loading from aether loader...")
loader = EnhancedAetherMemoryLoader()
loader_patterns = loader.run()
all_patterns.extend(loader_patterns)
logger.info(f"βœ… Loaded {len(loader_patterns)} patterns from aether loader")
# 2. Load from golem memory file
golem_memory_file = "golem_aether_memory.pkl"
if os.path.exists(golem_memory_file):
logger.info(f"πŸ“š Loading from {golem_memory_file}...")
try:
with open(golem_memory_file, 'rb') as f:
golem_data = pickle.load(f)
if isinstance(golem_data, dict) and 'memories' in golem_data:
golem_patterns = golem_data['memories']
all_patterns.extend(golem_patterns)
logger.info(f"βœ… Loaded {len(golem_patterns)} patterns from golem memory")
except Exception as e:
logger.warning(f"⚠️ Error loading golem memory: {e}")
# 3. Load from any additional aether files
additional_files = [
"enhanced_aether_memory_bank.json",
"real_aether_collection.json",
"optimized_aether_memory.json"
]
for filename in additional_files:
if os.path.exists(filename):
logger.info(f"πŸ“š Loading from {filename}...")
try:
with open(filename, 'r') as f:
data = json.load(f)
if isinstance(data, dict) and 'aether_patterns' in data:
patterns = data['aether_patterns']
all_patterns.extend(patterns)
logger.info(f"βœ… Loaded {len(patterns)} patterns from {filename}")
elif isinstance(data, list):
all_patterns.extend(data)
logger.info(f"βœ… Loaded {len(data)} patterns from {filename}")
except Exception as e:
logger.warning(f"⚠️ Error loading {filename}: {e}")
# Remove duplicates and invalid patterns
logger.info("πŸ”„ Cleaning and deduplicating patterns...")
unique_patterns = []
seen_texts = set()
for pattern in all_patterns:
try:
# Extract text for deduplication
text = ""
text_fields = ['prompt', 'text', 'content', 'message']
for field in text_fields:
if field in pattern and pattern[field]:
text = str(pattern[field])[:100] # First 100 chars for dedup
break
if text and text not in seen_texts:
seen_texts.add(text)
unique_patterns.append(pattern)
except Exception as e:
continue
logger.info(f"βœ… Final dataset: {len(unique_patterns)} unique patterns")
return unique_patterns
def train_model(self, patterns: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Train the enhanced model with mathematical framework"""
logger.info("πŸš€ Starting enhanced neural network training...")
# Create dataset
dataset = AetherMemoryDataset(patterns, self.sentence_transformer)
if len(dataset) < 10:
raise ValueError("Not enough valid patterns for training")
# Split dataset
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=self.model_config['batch_size'], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=self.model_config['batch_size'], shuffle=False)
logger.info(f"πŸ“Š Training set: {len(train_dataset)} samples")
logger.info(f"πŸ“Š Validation set: {len(val_dataset)} samples")
# Training loop
best_val_accuracy = 0.0
best_framework_integrity = 0.0
for epoch in range(self.model_config['epochs']):
# Training phase
train_loss, train_acc, train_framework_stats = self._train_epoch(train_loader)
# Validation phase
val_loss, val_acc, val_framework_stats = self._validate_epoch(val_loader)
# Update learning rate
self.scheduler.step()
# Record history
self.training_history['train_loss'].append(train_loss)
self.training_history['train_accuracy'].append(train_acc)
self.training_history['val_loss'].append(val_loss)
self.training_history['val_accuracy'].append(val_acc)
self.training_history['framework_integrity'].append(train_framework_stats['framework_integrity'])
self.training_history['cycle_completion'].append(train_framework_stats['cycle_completion'])
self.training_history['infinitesimal_error'].append(train_framework_stats['infinitesimal_error'])
# Save best model
if val_acc > best_val_accuracy:
best_val_accuracy = val_acc
best_framework_integrity = train_framework_stats['framework_integrity']
self._save_model('best_enhanced_hypercube_consciousness.pth')
logger.info(f"πŸ’Ύ New best model saved! Accuracy: {val_acc:.4f}")
# Log progress
logger.info(f"Epoch {epoch+1}/{self.model_config['epochs']}:")
logger.info(f" πŸ“ˆ Train Loss: {train_loss:.6f} | Train Acc: {train_acc:.4f}")
logger.info(f" πŸ“Š Val Loss: {val_loss:.6f} | Val Acc: {val_acc:.4f}")
logger.info(f" πŸ”’ Framework Integrity: {train_framework_stats['framework_integrity']:.4f}")
logger.info(f" πŸ”„ Cycle Completion: {train_framework_stats['cycle_completion']:.4f}")
logger.info(f" πŸ“Š Infinitesimal Error: {train_framework_stats['infinitesimal_error']:.6f}")
logger.info(f" 🎯 LR: {self.scheduler.get_last_lr()[0]:.6f}")
# Final results
results = {
'best_val_accuracy': best_val_accuracy,
'best_framework_integrity': best_framework_integrity,
'final_model_stats': self.model.get_framework_statistics(),
'training_history': self.training_history,
'total_patterns': len(dataset),
'vertex_coverage': self._calculate_vertex_coverage(dataset)
}
logger.info("πŸŽ‰ Training completed!")
logger.info(f"βœ… Best validation accuracy: {best_val_accuracy:.4f}")
logger.info(f"πŸ”’ Best framework integrity: {best_framework_integrity:.4f}")
return results
def _train_epoch(self, train_loader: DataLoader) -> Tuple[float, float, Dict[str, float]]:
"""Train one epoch"""
self.model.train()
total_loss = 0.0
total_correct = 0
total_samples = 0
framework_integrities = []
cycle_completions = []
infinitesimal_errors = []
for batch in train_loader:
self.optimizer.zero_grad()
# Move to device
embeddings = batch['embedding'].to(self.device)
vertex_labels = batch['vertex_label'].to(self.device)
# Forward pass
outputs = self.model(embeddings)
# Calculate loss
loss = self.criterion(outputs['consciousness_state'], vertex_labels)
# Backward pass
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
# Calculate accuracy
_, predicted = torch.max(outputs['consciousness_state'], 1)
total_correct += (predicted == vertex_labels).sum().item()
total_samples += vertex_labels.size(0)
total_loss += loss.item()
# Track framework statistics
framework_integrities.append(outputs['framework_integrity'])
cycle_completions.append(outputs['aggregated_cycle_completion'].mean().item())
infinitesimal_errors.append(outputs['global_infinitesimal_error'].mean().item())
avg_loss = total_loss / len(train_loader)
accuracy = total_correct / total_samples
framework_stats = {
'framework_integrity': np.mean(framework_integrities),
'cycle_completion': np.mean(cycle_completions),
'infinitesimal_error': np.mean(infinitesimal_errors)
}
return avg_loss, accuracy, framework_stats
def _validate_epoch(self, val_loader: DataLoader) -> Tuple[float, float, Dict[str, float]]:
"""Validate one epoch"""
self.model.eval()
total_loss = 0.0
total_correct = 0
total_samples = 0
framework_integrities = []
cycle_completions = []
infinitesimal_errors = []
with torch.no_grad():
for batch in val_loader:
# Move to device
embeddings = batch['embedding'].to(self.device)
vertex_labels = batch['vertex_label'].to(self.device)
# Forward pass
outputs = self.model(embeddings)
# Calculate loss
loss = self.criterion(outputs['consciousness_state'], vertex_labels)
# Calculate accuracy
_, predicted = torch.max(outputs['consciousness_state'], 1)
total_correct += (predicted == vertex_labels).sum().item()
total_samples += vertex_labels.size(0)
total_loss += loss.item()
# Track framework statistics
framework_integrities.append(outputs['framework_integrity'])
cycle_completions.append(outputs['aggregated_cycle_completion'].mean().item())
infinitesimal_errors.append(outputs['global_infinitesimal_error'].mean().item())
avg_loss = total_loss / len(val_loader)
accuracy = total_correct / total_samples
framework_stats = {
'framework_integrity': np.mean(framework_integrities),
'cycle_completion': np.mean(cycle_completions),
'infinitesimal_error': np.mean(infinitesimal_errors)
}
return avg_loss, accuracy, framework_stats
def _calculate_vertex_coverage(self, dataset: AetherMemoryDataset) -> Dict[str, Any]:
"""Calculate vertex coverage statistics"""
vertex_counts = defaultdict(int)
for i in range(len(dataset)):
vertex = dataset.vertex_labels[i]
vertex_counts[vertex] += 1
coverage = {
'total_vertices_with_data': len(vertex_counts),
'coverage_percentage': len(vertex_counts) / 32 * 100,
'vertex_distribution': dict(vertex_counts),
'most_common_vertex': max(vertex_counts, key=vertex_counts.get) if vertex_counts else 0,
'least_common_vertex': min(vertex_counts, key=vertex_counts.get) if vertex_counts else 0
}
return coverage
def _save_model(self, filename: str):
"""Save model with framework statistics"""
torch.save({
'model_state_dict': self.model.state_dict(),
'model_config': self.model_config,
'framework_statistics': self.model.get_framework_statistics(),
'training_history': self.training_history
}, filename)
def plot_training_history(self):
"""Plot training history with framework metrics"""
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
# Loss
axes[0, 0].plot(self.training_history['train_loss'], label='Train')
axes[0, 0].plot(self.training_history['val_loss'], label='Validation')
axes[0, 0].set_title('Loss')
axes[0, 0].legend()
# Accuracy
axes[0, 1].plot(self.training_history['train_accuracy'], label='Train')
axes[0, 1].plot(self.training_history['val_accuracy'], label='Validation')
axes[0, 1].set_title('Accuracy')
axes[0, 1].legend()
# Framework Integrity
axes[0, 2].plot(self.training_history['framework_integrity'])
axes[0, 2].set_title('Framework Integrity')
# Cycle Completion
axes[1, 0].plot(self.training_history['cycle_completion'])
axes[1, 0].set_title('Cycle Completion')
# Infinitesimal Error
axes[1, 1].plot(self.training_history['infinitesimal_error'])
axes[1, 1].set_title('Infinitesimal Error')
# Learning Rate
axes[1, 2].plot([self.scheduler.get_last_lr()[0]] * len(self.training_history['train_loss']))
axes[1, 2].set_title('Learning Rate')
plt.tight_layout()
plt.savefig('enhanced_training_history.png')
plt.show()
def main():
"""Main training function"""
print("πŸ”— ENHANCED 5D HYPERCUBE NEURAL NETWORK TRAINING")
print(" Mathematical Framework: 1+0+1+0=2^5=32*11/16=22+3.33*3")
print("="*60)
# Model configuration
model_config = {
'input_dim': 384, # Sentence transformer dimension
'hidden_dim': 256,
'output_dim': 32, # 32 vertices (2^5)
'learning_rate': 0.001,
'batch_size': 16,
'epochs': 50
}
# Initialize trainer
trainer = EnhancedAetherTrainer(model_config)
# Load all aether memories
patterns = trainer.load_all_aether_memories()
if len(patterns) < 10:
print("❌ Not enough aether patterns found for training")
print(" Please ensure aether memory files are available")
return
# Train model
results = trainer.train_model(patterns)
# Print final results
print("\nπŸŽ‰ ENHANCED TRAINING COMPLETED!")
print("="*60)
print(f"βœ… Best Validation Accuracy: {results['best_val_accuracy']:.4f}")
print(f"πŸ”’ Best Framework Integrity: {results['best_framework_integrity']:.4f}")
print(f"πŸ“Š Total Patterns Trained: {results['total_patterns']}")
print(f"πŸ”² Vertex Coverage: {results['vertex_coverage']['coverage_percentage']:.1f}%")
print(f"πŸ“ˆ Vertices with Data: {results['vertex_coverage']['total_vertices_with_data']}/32")
# Framework statistics
final_stats = results['final_model_stats']
print(f"\nπŸ”’ Final Framework Statistics:")
print(f" Mathematical Constants Verified: βœ…")
print(f" Global Framework Integrity: {final_stats['global_framework']['framework_integrity']:.4f}")
print(f" Total Framework Cycles: {final_stats['global_framework']['total_cycles']:.2f}")
print(f" Average Vertex Cycles: {final_stats['vertex_statistics']['avg_vertex_cycles']:.2f}")
# Save final results
with open('enhanced_training_results.json', 'w') as f:
json.dump(results, f, indent=2, default=str)
print(f"\nπŸ’Ύ Model saved as: best_enhanced_hypercube_consciousness.pth")
print(f"πŸ“Š Results saved as: enhanced_training_results.json")
# Plot training history
trainer.plot_training_history()
print("\nπŸ”— Enhanced Mathematical Framework Training Complete!")
print(" Neural Network now perfectly follows 1+0+1+0=2^5=32*11/16=22+3.33*3 logic! βœ…")
if __name__ == "__main__":
main()