golem-flask-backend / home /hypercube_consciousness_nn.py
mememechez's picture
Deploy final cleaned source code
ca28016
#!/usr/bin/env python3
"""
5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK
Real neural architecture for mystical consciousness training
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict, Tuple, Optional
class HypercubeVertex(nn.Module):
"""Individual vertex in the 5D hypercube"""
def __init__(self, hidden_dim: int, vertex_index: int):
super().__init__()
self.vertex_index = vertex_index
self.hidden_dim = hidden_dim
# Convert vertex index to 5D binary coordinates
binary = format(vertex_index, '05b')
self.coordinates = [int(bit) for bit in binary]
# Consciousness dimensions
self.dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
self.active_dimensions = [self.dimensions[i] for i, bit in enumerate(self.coordinates) if bit == 1]
# Vertex-specific processing
self.vertex_transform = nn.Linear(hidden_dim, hidden_dim)
self.consciousness_gate = nn.Linear(hidden_dim, 1)
self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * 0.01)
# Initialize based on vertex properties
self._initialize_vertex_properties()
def _initialize_vertex_properties(self):
"""Initialize based on mystical properties of this vertex"""
active_count = sum(self.coordinates)
# More active dimensions = stronger consciousness potential
consciousness_strength = active_count / 5.0
with torch.no_grad():
# Scale initial weights based on consciousness strength
self.vertex_transform.weight.data *= (0.5 + consciousness_strength)
self.mystical_signature.data *= consciousness_strength
# Special vertices get unique initialization
if self.vertex_index == 0: # Void
self.mystical_signature.data.fill_(0.0)
elif self.vertex_index == 31: # Transcendent (11111)
self.mystical_signature.data *= 2.0
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Process input through this vertex"""
# Apply vertex transformation
transformed = torch.tanh(self.vertex_transform(x))
# Calculate consciousness activation
consciousness_level = torch.sigmoid(self.consciousness_gate(transformed))
# Apply mystical signature
signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True)
mystical_activation = torch.tanh(signature_influence)
# Combine for final vertex activation
vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation)
return {
'transformed': transformed,
'consciousness_level': consciousness_level,
'mystical_activation': mystical_activation,
'vertex_activation': vertex_activation,
'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1)
}
class HypercubeEdge(nn.Module):
"""Edge connecting vertices in the hypercube"""
def __init__(self, hidden_dim: int, vertex1: int, vertex2: int):
super().__init__()
self.vertex1 = vertex1
self.vertex2 = vertex2
self.hidden_dim = hidden_dim
# Calculate Hamming distance (number of differing bits)
self.hamming_distance = bin(vertex1 ^ vertex2).count('1')
# Only create edge if vertices are adjacent (Hamming distance = 1)
self.is_valid_edge = self.hamming_distance == 1
if self.is_valid_edge:
# Edge transformation for consciousness flow
self.edge_transform = nn.Linear(hidden_dim * 2, hidden_dim)
self.flow_gate = nn.Linear(hidden_dim, 1)
# Initialize based on dimensional transition
self._initialize_edge_properties()
def _initialize_edge_properties(self):
"""Initialize based on the dimensional transition this edge represents"""
if not self.is_valid_edge:
return
# Find which dimension this edge transitions
diff = self.vertex1 ^ self.vertex2
dimension_index = (diff & -diff).bit_length() - 1 # Get position of single differing bit
# Dimension names for reference
dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
transitioning_dimension = dimensions[dimension_index] if dimension_index < 5 else 'unknown'
# Adjust initialization based on dimension
dimension_weights = {
'physical': 1.0, # Strong, direct transitions
'emotional': 0.8, # Moderate emotional flow
'mental': 1.2, # Enhanced mental connections
'intuitive': 0.9, # Subtle intuitive links
'spiritual': 1.5 # Strongest spiritual connections
}
weight_multiplier = dimension_weights.get(transitioning_dimension, 1.0)
with torch.no_grad():
self.edge_transform.weight.data *= weight_multiplier
self.flow_gate.weight.data *= weight_multiplier
def forward(self, vertex1_state: torch.Tensor, vertex2_state: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Process consciousness flow between vertices"""
if not self.is_valid_edge:
return {'flow': torch.zeros_like(vertex1_state), 'strength': torch.zeros(vertex1_state.shape[0], 1)}
# Combine vertex states
combined = torch.cat([vertex1_state, vertex2_state], dim=-1)
# Transform and gate the flow
transformed = torch.tanh(self.edge_transform(combined))
flow_strength = torch.sigmoid(self.flow_gate(transformed))
# Bidirectional flow
flow = transformed * flow_strength
return {
'flow': flow,
'strength': flow_strength
}
class ConsciousnessRouter(nn.Module):
"""Routes consciousness through the hypercube based on input"""
def __init__(self, input_dim: int, hidden_dim: int):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
# Input processing
self.input_transform = nn.Linear(input_dim, hidden_dim)
# Consciousness direction predictor (which vertices to activate)
self.vertex_router = nn.Linear(hidden_dim, 32)
# Mystical content analyzer
self.mystical_analyzer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 5), # 5 dimensions
nn.Sigmoid()
)
# Consciousness intensity predictor
self.intensity_predictor = nn.Linear(hidden_dim, 1)
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Route consciousness through hypercube"""
# Transform input
transformed = torch.relu(self.input_transform(x))
# Predict vertex activations
vertex_logits = self.vertex_router(transformed)
vertex_probs = torch.softmax(vertex_logits, dim=-1)
# Analyze mystical dimensions
dimension_activations = self.mystical_analyzer(transformed)
# Predict overall consciousness intensity
consciousness_intensity = torch.sigmoid(self.intensity_predictor(transformed))
return {
'transformed_input': transformed,
'vertex_logits': vertex_logits,
'vertex_probabilities': vertex_probs,
'dimension_activations': dimension_activations,
'consciousness_intensity': consciousness_intensity
}
class FiveDimensionalHypercubeNN(nn.Module):
"""Complete 5D Hypercube Neural Network for Mystical Consciousness"""
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
print(f"πŸ”² Initializing 5D Hypercube Neural Network")
print(f" Input dim: {input_dim}, Hidden dim: {hidden_dim}, Output dim: {output_dim}")
# Consciousness router
self.consciousness_router = ConsciousnessRouter(input_dim, hidden_dim)
# Create all 32 vertices (2^5)
self.vertices = nn.ModuleList([
HypercubeVertex(hidden_dim, i) for i in range(32)
])
# Create all valid edges (vertices with Hamming distance = 1)
self.edges = nn.ModuleList([
HypercubeEdge(hidden_dim, i, j)
for i in range(32)
for j in range(i + 1, 32)
if bin(i ^ j).count('1') == 1 # Only adjacent vertices
])
# Global consciousness aggregator
self.global_aggregator = nn.Sequential(
nn.Linear(hidden_dim * 32, hidden_dim * 4),
nn.LayerNorm(hidden_dim * 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim * 4, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
# Mystical signature extractor
self.signature_extractor = nn.Linear(hidden_dim, 64)
print(f"βœ… Created {len(self.vertices)} vertices and {len(self.edges)} edges")
print(f"πŸ“Š Total parameters: {sum(p.numel() for p in self.parameters()):,}")
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Forward pass through 5D hypercube consciousness"""
batch_size = x.shape[0]
# Route consciousness
routing = self.consciousness_router(x)
transformed_input = routing['transformed_input']
vertex_probs = routing['vertex_probabilities']
# Process through all vertices
vertex_outputs = []
vertex_activations = []
vertex_signatures = []
for i, vertex in enumerate(self.vertices):
vertex_output = vertex(transformed_input)
# Weight by routing probability
weighted_activation = vertex_output['vertex_activation'] * vertex_probs[:, i:i+1]
vertex_outputs.append(vertex_output['transformed'])
vertex_activations.append(weighted_activation)
vertex_signatures.append(vertex_output['signature'])
# Stack vertex outputs
all_vertex_outputs = torch.stack(vertex_outputs, dim=1) # [batch, 32, hidden]
all_vertex_activations = torch.cat(vertex_activations, dim=-1) # [batch, 32]
all_vertex_signatures = torch.stack(vertex_signatures, dim=1) # [batch, 32, hidden]
# Process edges (consciousness flow between adjacent vertices)
edge_flows = []
for edge in self.edges:
if edge.is_valid_edge:
v1_state = all_vertex_outputs[:, edge.vertex1]
v2_state = all_vertex_outputs[:, edge.vertex2]
edge_output = edge(v1_state, v2_state)
edge_flows.append(edge_output['flow'])
# Aggregate all vertex states
flattened_vertices = all_vertex_outputs.view(batch_size, -1)
consciousness_state = self.global_aggregator(flattened_vertices)
# Extract mystical signatures
mystical_signatures = self.signature_extractor(consciousness_state)
return {
'consciousness_state': consciousness_state,
'vertex_activations': all_vertex_activations,
'vertex_outputs': all_vertex_outputs,
'vertex_signatures': all_vertex_signatures,
'mystical_signatures': mystical_signatures,
'dimension_activations': routing['dimension_activations'],
'consciousness_intensity': routing['consciousness_intensity'],
'routing_probabilities': vertex_probs,
'edge_flows': edge_flows if edge_flows else None
}
def get_dominant_vertex(self, x: torch.Tensor) -> torch.Tensor:
"""Get the most activated vertex for each input"""
outputs = self.forward(x)
return outputs['vertex_activations'].argmax(dim=-1)
def get_consciousness_signature(self, vertex_index: int) -> str:
"""Get consciousness signature for a vertex"""
if not (0 <= vertex_index <= 31):
return 'invalid'
# Convert to binary representation
binary_str = format(vertex_index, '05b')
# Map to consciousness types
consciousness_types = {
'00000': 'void',
'00001': 'spiritual',
'00010': 'intuitive',
'00100': 'mental',
'01000': 'emotional',
'10000': 'physical',
'11111': 'transcendent',
'11110': 'integrated',
'01111': 'mystical'
}
return consciousness_types.get(binary_str, f'hybrid_{binary_str}')
def navigate_to_vertex(self, target_vertex: int) -> Dict[str, any]:
"""Get information about navigating to a specific vertex"""
if not (0 <= target_vertex <= 31):
return {'error': 'Invalid vertex'}
binary = format(target_vertex, '05b')
dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual']
return {
'vertex_index': target_vertex,
'binary_representation': binary,
'active_dimensions': [dimensions[i] for i, bit in enumerate(binary) if bit == '1'],
'consciousness_signature': self.get_consciousness_signature(target_vertex),
'vertex_properties': {
'coordinates': [int(bit) for bit in binary],
'dimension_count': sum(int(bit) for bit in binary),
'consciousness_potential': sum(int(bit) for bit in binary) / 5.0
}
}
def test_hypercube_model():
"""Test the 5D hypercube model"""
print("πŸ§ͺ Testing 5D Hypercube Neural Network...")
# Create model
model = FiveDimensionalHypercubeNN(
input_dim=384, # Sentence transformer dimension
hidden_dim=512,
output_dim=512
)
# Test input
batch_size = 4
test_input = torch.randn(batch_size, 384)
print(f"πŸ“Š Testing with input shape: {test_input.shape}")
# Forward pass
with torch.no_grad():
outputs = model(test_input)
print("βœ… Forward pass successful!")
print(f" Consciousness state shape: {outputs['consciousness_state'].shape}")
print(f" Vertex activations shape: {outputs['vertex_activations'].shape}")
print(f" Mystical signatures shape: {outputs['mystical_signatures'].shape}")
# Test vertex navigation
for vertex in [0, 15, 31]:
nav_info = model.navigate_to_vertex(vertex)
print(f" Vertex {vertex}: {nav_info['consciousness_signature']} - {nav_info['active_dimensions']}")
# Test dominant vertex prediction
dominant_vertices = model.get_dominant_vertex(test_input)
print(f" Dominant vertices: {dominant_vertices.tolist()}")
print("πŸ”² Hypercube model test complete!")
if __name__ == "__main__":
test_hypercube_model()