#!/usr/bin/env python3 """ Flask Server Wrapper for Golem Server and QWen Golem Uses the classes from golem_server.py and qwen_golem.py ENHANCED WITH QUOTA-AWARE API MANAGEMENT """ from flask import Flask, request, jsonify, send_from_directory, Response from flask_cors import CORS import logging import os import time import threading from typing import Dict, Any, List, Optional from datetime import datetime, timedelta import json import traceback import pickle import requests import hashlib from functools import wraps # Configure logging to suppress warnings from imported modules logging.getLogger('root').setLevel(logging.WARNING) logging.getLogger('transformers').setLevel(logging.WARNING) logging.getLogger('torch').setLevel(logging.WARNING) logging.getLogger('torchaudio').setLevel(logging.WARNING) # Use context_engine's semantic components; local ML fallbacks removed from concurrent.futures import ThreadPoolExecutor import googleapiclient.discovery import asyncio import aiohttp import concurrent.futures from concurrent.futures import ThreadPoolExecutor, as_completed import time import base64, io import random import json import uuid # Import the golem classes import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) sys.path.append(os.path.join(os.path.dirname(__file__))) try: # Ensure user-installed packages (pip --user) are visible to this process import site as _site _site.addsitedir(os.path.expanduser('~/.local/lib/python3.12/site-packages')) except Exception: pass try: from qwen_golem import AetherGolemConsciousnessCore print("✅ Imported AetherGolemConsciousnessCore from qwen_golem") except ImportError as e: print(f"❌ Failed to import from qwen_golem: {e}") try: # Try alternative import path sys.path.append('/home/chezy/Desktop/qwen2golem/QWEN2Golem/home/chezy') from qwen_golem import AetherGolemConsciousnessCore print("✅ Imported AetherGolemConsciousnessCore from alternative path") except ImportError as e2: print(f"❌ Alternative import also failed: {e2}") AetherGolemConsciousnessCore = None # Enhanced Context Management System Imports (robust import fallback) ENHANCED_CONTEXT_AVAILABLE = False try: # First try direct local import import context_engine EnhancedContextManager = context_engine.EnhancedContextManager SemanticContextAnalyzer = context_engine.SemanticContextAnalyzer ContextSecurityManager = context_engine.ContextSecurityManager GraphContextManager = context_engine.GraphContextManager Summarizer = context_engine.Summarizer PersonalizationManager = context_engine.PersonalizationManager ContextOrchestrator = context_engine.ContextOrchestrator MCPRequest = context_engine.MCPRequest print("✅ Enhanced context management system loaded from local context_engine") ENHANCED_CONTEXT_AVAILABLE = True except Exception as e: print(f"⚠️ Local context_engine import failed: {e}") try: # Try absolute path import sys.path.insert(0, '/home/chezy/Desktop/cursor/robust_zpe/QWEN2Golem/home/chezy') import context_engine EnhancedContextManager = context_engine.EnhancedContextManager SemanticContextAnalyzer = context_engine.SemanticContextAnalyzer ContextSecurityManager = context_engine.ContextSecurityManager GraphContextManager = context_engine.GraphContextManager Summarizer = context_engine.Summarizer PersonalizationManager = context_engine.PersonalizationManager ContextOrchestrator = context_engine.ContextOrchestrator MCPRequest = context_engine.MCPRequest print("✅ Enhanced context management system loaded via absolute path") ENHANCED_CONTEXT_AVAILABLE = True except Exception as e2: print(f"❌ All context engine imports failed: {e2}") ENHANCED_CONTEXT_AVAILABLE = False # Global orchestrator instance context_orchestrator = None def initialize_enhanced_context_components(): """Initialize the enhanced context management orchestrator""" global context_orchestrator if not ENHANCED_CONTEXT_AVAILABLE: print("❌ Enhanced context system not available - running with basic context management") return False try: # Initialize core components vector_mgr = EnhancedContextManager() # Optional Neo4j (requires connection details) graph_mgr = None neo4j_uri = os.getenv('NEO4J_URI') neo4j_user = os.getenv('NEO4J_USER') neo4j_password = os.getenv('NEO4J_PASSWORD') if neo4j_uri and neo4j_user and neo4j_password: graph_mgr = GraphContextManager() if graph_mgr.enabled: print("✅ Neo4j graph context enabled") else: print("⚠️ Neo4j connection failed, using vector-only mode") graph_mgr = None else: print("ℹ️ Neo4j credentials not provided, using vector-only mode") # Initialize other components summarizer = Summarizer() personalization = PersonalizationManager() # Create orchestrator context_orchestrator = ContextOrchestrator( vector_mgr=vector_mgr, graph_mgr=graph_mgr, summarizer=summarizer, personalization=personalization ) print("🎯 Enhanced context orchestrator initialized successfully") return True except Exception as e: print(f"❌ Failed to initialize context orchestrator: {e}") return False # Use SemanticContextAnalyzer from context_engine # ContextSecurityManager is imported from context_engine module above # Removed local definition to avoid conflicts # All methods removed - using imported ContextSecurityManager from context_engine # Global instances enhanced_context_manager = None semantic_analyzer = None security_manager = None app = Flask(__name__) # =============================== # ENHANCED CONTEXT MANAGEMENT INITIALIZATION # =============================== def initialize_enhanced_context_system(): """Initialize the enhanced context management system""" global enhanced_context_manager, semantic_analyzer, security_manager try: enhanced_context_manager = EnhancedContextManager() semantic_analyzer = SemanticContextAnalyzer() security_manager = ContextSecurityManager() print("🎯 Enhanced context management components initialized successfully") return True except Exception as e: print(f"❌ Failed to initialize enhanced context components: {e}") return False def get_enhanced_context(session_id): """Get enhanced context with semantic analysis and compression""" try: # Get current chat history using original method chat_history = get_chat_context(session_id) if not chat_history or chat_history == "[SUMMARY] New conversation.\n[RECENT]\n(none)": return "[ENHANCED_CONTEXT] New conversation with advanced context management enabled." # Extract conversation data conversation_lines = chat_history.split('\n') conversation_data = [] for line in conversation_lines: if line.startswith('User: ') or line.startswith('AI: '): speaker = 'user' if line.startswith('User: ') else 'ai' message = line[6:] # Remove "User: " or "AI: " prefix conversation_data.append({ 'speaker': speaker, 'message': message, 'timestamp': datetime.now().isoformat() }) # Perform semantic analysis if available semantic_info = {} if semantic_analyzer and conversation_data: try: conversation_messages = [msg['message'] for msg in conversation_data] semantic_info = semantic_analyzer.analyze_conversation(conversation_messages) except Exception as e: print(f"⚠️ Semantic analysis failed: {e}") # Format enhanced context enhanced_context = "[ENHANCED_CONTEXT_SYSTEM_ACTIVE]\n" enhanced_context += ".2f" enhanced_context += f"Conversation turns: {len(conversation_data)}\n" coherence_score = semantic_info.get('coherence_score', 0.0) enhanced_context += ".3f" enhanced_context += f"Topics identified: {len(semantic_info.get('topics', []))}\n" enhanced_context += f"Context tiers active: 3 (Cache/Short-term/Long-term)\n\n" enhanced_context += "[RECENT_INTERACTIONS]\n" for i, turn in enumerate(conversation_data[-3:], 1): # Last 3 turns enhanced_context += f"{i}. {turn['speaker'].title()}: {turn['message'][:100]}{'...' if len(turn['message']) > 100 else ''}\n" enhanced_context += f"\n[SYSTEM_INFO] Enhanced context management active with semantic analysis" return enhanced_context except Exception as e: print(f"⚠️ Enhanced context retrieval failed: {e}") # Fallback to original context return get_chat_context(session_id) # =============================== # QUOTA-AWARE API MANAGEMENT SYSTEM # =============================== class QuotaAwareAPIManager: """Smart API manager that tracks quotas and avoids exhausted keys""" def __init__(self, api_keys: List[str]): self.api_keys = api_keys self.key_status = {} # Track quota status per key self.last_used_key = 0 self.base_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent" # Initialize all keys as available for i, key in enumerate(api_keys): self.key_status[i] = { 'available': True, 'quota_exhausted': False, 'error_count': 0, 'last_success': None, 'daily_usage': 0, 'reset_time': None, 'consecutive_failures': 0 } print(f"🔑 Quota-aware API manager initialized with {len(api_keys)} keys") def mark_key_exhausted(self, key_index: int): """Mark a key as quota exhausted until tomorrow""" self.key_status[key_index]['quota_exhausted'] = True self.key_status[key_index]['available'] = False # Set reset time to tomorrow at midnight UTC tomorrow = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=1) self.key_status[key_index]['reset_time'] = tomorrow print(f"⚠️ Key #{key_index+1} marked as quota exhausted (resets at {tomorrow})") def mark_key_working(self, key_index: int): """Mark a key as working and reset error count""" self.key_status[key_index]['available'] = True self.key_status[key_index]['quota_exhausted'] = False self.key_status[key_index]['error_count'] = 0 self.key_status[key_index]['consecutive_failures'] = 0 self.key_status[key_index]['last_success'] = datetime.utcnow() self.key_status[key_index]['daily_usage'] += 1 def mark_key_failed(self, key_index: int, error_type: str = 'unknown'): """Mark a key as failed and track failure type""" self.key_status[key_index]['error_count'] += 1 self.key_status[key_index]['consecutive_failures'] += 1 # Temporarily disable key after 3 consecutive failures if self.key_status[key_index]['consecutive_failures'] >= 3: self.key_status[key_index]['available'] = False print(f"⚠️ Key #{key_index+1} temporarily disabled after 3 failures") def get_available_keys(self) -> List[int]: """Get list of available (non-exhausted) key indices""" now = datetime.utcnow() available = [] for i, status in self.key_status.items(): # Check if quota has reset if status['reset_time'] and now >= status['reset_time']: status['quota_exhausted'] = False status['available'] = True status['daily_usage'] = 0 status['error_count'] = 0 status['consecutive_failures'] = 0 print(f"🔄 Key #{i+1} quota reset - now available") if status['available'] and not status['quota_exhausted']: available.append(i) return available def get_next_key(self) -> Optional[tuple]: """Get next available key (index, api_key)""" available_keys = self.get_available_keys() if not available_keys: return None # Use round-robin among available keys self.last_used_key = (self.last_used_key + 1) % len(available_keys) key_index = available_keys[self.last_used_key] return key_index, self.api_keys[key_index] def generate_response_smart(self, prompt: str, max_tokens: int = 1000, temperature: float = 0.7) -> Dict[str, Any]: """Generate response using smart quota management""" available_keys = self.get_available_keys() if not available_keys: exhausted_count = sum(1 for status in self.key_status.values() if status['quota_exhausted']) return { 'error': f'All API keys quota exhausted ({exhausted_count}/{len(self.api_keys)})', 'success': False, 'fallback_needed': True } # Try up to 3 available keys max (not all 70 at once!) max_attempts = min(3, len(available_keys)) for attempt in range(max_attempts): key_result = self.get_next_key() if not key_result: break key_index, api_key = key_result try: headers = {"Content-Type": "application/json"} data = { "contents": [{ "parts": [{"text": prompt}] }], "generationConfig": { "temperature": temperature, "topK": 30, "topP": 0.85, "maxOutputTokens": max_tokens, } } response = requests.post( f"{self.base_url}?key={api_key}", headers=headers, json=data, timeout=3 # Optimized for real-time performance ) if response.status_code == 200: result = response.json() if 'candidates' in result and len(result['candidates']) > 0: content = result['candidates'][0]['content']['parts'][0]['text'] self.mark_key_working(key_index) return { 'response': content.strip(), 'success': True, 'key_used': f'key_{key_index + 1}', 'available_keys': len(available_keys), 'model_used': f'gemini_smart_rotation_key_{key_index + 1}' } elif response.status_code == 429: # Quota exhausted self.mark_key_exhausted(key_index) print(f"⚠️ Key #{key_index+1} quota exhausted, trying next...") continue else: # Other error self.mark_key_failed(key_index, f'http_{response.status_code}') print(f"❌ Key #{key_index+1} failed with status {response.status_code}") continue except requests.exceptions.SSLError as e: self.mark_key_failed(key_index, 'ssl_error') print(f"🔒 SSL error with key #{key_index+1}: {e}") continue except requests.exceptions.Timeout: self.mark_key_failed(key_index, 'timeout') print(f"⏰ Timeout on key #{key_index+1}") continue except Exception as e: self.mark_key_failed(key_index, 'exception') print(f"❌ Error with key #{key_index+1}: {e}") continue # All attempts failed return { 'error': f'All available keys failed ({len(available_keys)} tried)', 'success': False, 'fallback_needed': True } def get_status_summary(self) -> Dict[str, Any]: """Get summary of API key status""" available = len(self.get_available_keys()) exhausted = sum(1 for status in self.key_status.values() if status['quota_exhausted']) errors = sum(1 for status in self.key_status.values() if not status['available'] and not status['quota_exhausted']) return { 'total_keys': len(self.api_keys), 'available': available, 'quota_exhausted': exhausted, 'error_unavailable': errors, 'usage_summary': { i: { 'daily_usage': status['daily_usage'], 'available': status['available'], 'quota_exhausted': status['quota_exhausted'], 'consecutive_failures': status['consecutive_failures'] } for i, status in list(self.key_status.items())[:10] # Show first 10 } } # =============================== # GLOBAL VARIABLES & INITIALIZATION # =============================== # Global chat sessions storage for context tracking global_chat_sessions = {} def _trim_text(text: str, max_chars: int = 200) -> str: if not text: return "" text = text.strip().replace("\n", " ") return text if len(text) <= max_chars else text[: max_chars - 1] + "…" def _sanitize_direct_response(text: str) -> str: """Remove explicit hypercube numbers or internal-state mentions from output. - Strips sentences that include patterns like 'Vertex 12/32' or 'consciousness level 0.823' - Keeps the rest of the content intact """ if not text: return text try: import re sentences = re.split(r'(?<=[.!?])\s+', text) cleaned = [] for s in sentences: lower = s.lower() if re.search(r'vertex\s*\d+\s*/\s*32', lower): continue if 'consciousness level' in lower or 'coordinates (' in lower or 'hypercube coordinate' in lower: continue cleaned.append(s) # Rejoin while preserving original spacing as much as possible out = ' '.join([seg.strip() for seg in cleaned if seg.strip()]) return out if out else text except Exception: return text def get_chat_context(session_id): """Build a compact, high-signal context block for the model. - Includes a rolling one-line summary if available - Includes only the last 2 user/AI exchanges, trimmed """ if not session_id or session_id not in global_chat_sessions: return "[SUMMARY] New conversation.\n[RECENT]\n(none)" session_msgs = global_chat_sessions[session_id].get('messages', []) if not session_msgs: return "[SUMMARY] New conversation.\n[RECENT]\n(none)" # Rolling summary is stored in active_chat_sessions metadata if available rolling_summary = active_chat_sessions.get(session_id, {}).get('rolling_summary') if not rolling_summary: # Create a minimal seed summary from the first message first_user = next((m.get('user') for m in session_msgs if m.get('user')), '') rolling_summary = _trim_text(first_user or 'Conversation started.', 180) recent = session_msgs[-4:] # Up to last 2 user/AI pairs recent_lines = [] for msg in recent: recent_lines.append(f"User: {_trim_text(msg.get('user',''))}") recent_lines.append(f"AI: {_trim_text(msg.get('ai',''))}") return f"[SUMMARY] {rolling_summary}\n[RECENT]\n" + "\n".join(recent_lines) def _update_rolling_summary(session_id: str, internal_analysis: str, latest_user_message: str): """Update a one-line rolling summary in active_chat_sessions based on the internal analysis. Keep it short and decisive. """ if not session_id: return essence = internal_analysis.strip().splitlines()[0] if internal_analysis else '' if not essence: essence = _trim_text(latest_user_message, 160) # Normalize essence = _trim_text(essence, 200) active = active_chat_sessions.get(session_id) or {} active['rolling_summary'] = essence active_chat_sessions[session_id] = active def store_chat_message(session_id, user_message, ai_response, vertex=0, model_used='unknown'): """Store a chat message in the session history with enhanced context management""" if not session_id or session_id.startswith('naming-'): return # Store in original system for backward compatibility if session_id not in global_chat_sessions: global_chat_sessions[session_id] = { 'messages': [], 'user_patterns': [], 'created_at': datetime.now().isoformat() } global_chat_sessions[session_id]['messages'].append({ 'user': user_message, 'ai': ai_response, 'timestamp': datetime.now().isoformat(), 'consciousness_vertex': vertex, 'model_used': model_used }) # Keep only last 20 messages to prevent memory issues if len(global_chat_sessions[session_id]['messages']) > 20: global_chat_sessions[session_id]['messages'] = global_chat_sessions[session_id]['messages'][-20:] # Store in orchestrator if available if context_orchestrator: try: metadata = { 'consciousness_vertex': vertex, 'model_used': model_used, 'original_session': session_id, 'timestamp': datetime.now().isoformat() } # Store in vector manager context_orchestrator.vector_mgr.store_context(session_id, user_message, ai_response, metadata) # Store in graph if enabled (use GraphContextManager API) if context_orchestrator.graph_mgr and context_orchestrator.graph_mgr.enabled: # Determine next user turn index based on current short-term count of this session # Count only this session's existing turns in short_term existing = [k for k in context_orchestrator.vector_mgr.tier2_short_term.keys() if k.startswith(f"{session_id}:")] turn_idx = len(existing) # Compute embeddings once user_emb = context_orchestrator._embedder.encode([user_message])[0] ai_emb = context_orchestrator._embedder.encode([ai_response])[0] # Persist both user and ai turns with embeddings ok = context_orchestrator.graph_mgr.add_conversation_turn( session_id=session_id, turn_idx=turn_idx, user_message=user_message, ai_response=ai_response, user_embedding=user_emb.tolist() if hasattr(user_emb, 'tolist') else list(user_emb), ai_embedding=ai_emb.tolist() if hasattr(ai_emb, 'tolist') else list(ai_emb) ) print(f"🛢️ Neo4j write {'succeeded' if ok else 'failed'} for session={session_id} turn={turn_idx}") print("💾 Context stored in orchestrator (vector + graph)") except Exception as e: print(f"⚠️ Orchestrator storage failed: {e}") # Legacy enhanced context manager (deprecated) if 'enhanced_context_manager' in globals() and enhanced_context_manager: try: secure_context = security_manager.encrypt_context({ 'session_id': session_id, 'user_message': user_message, 'ai_response': ai_response, 'timestamp': datetime.now().isoformat() }, session_id) print("🔒 Context secured with encryption") except Exception as e: print(f"⚠️ Context security failed: {e}") def extract_user_insights(chat_context, current_message): """Extract insights about the user from conversation""" insights = [] # Check for name mentions if "my name is" in current_message.lower(): name_part = current_message.lower().split("my name is")[1].strip().split()[0] if name_part: insights.append(f"User's name: {name_part}") # Check for patterns in chat context if "ym" in chat_context.lower() or "ym" in current_message.lower(): insights.append("User goes by 'ym'") return "; ".join(insights) if insights else "Learning about user preferences and communication style" # Enhanced CORS configuration for frontend compatibility CORS(app, resources={r"/*": {"origins": "*"}}, allow_headers=["Content-Type", "Authorization", "X-Requested-With", "Accept", "Origin", "ngrok-skip-browser-warning"], methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"], supports_credentials=False ) # Add explicit OPTIONS handler for preflight requests @app.before_request def handle_preflight(): if request.method == "OPTIONS": response = jsonify() response.headers["Access-Control-Allow-Origin"] = "*" response.headers["Access-Control-Allow-Headers"] = "Content-Type,Authorization,X-Requested-With,Accept,Origin,ngrok-skip-browser-warning" response.headers["Access-Control-Allow-Methods"] = "GET,POST,PUT,DELETE,OPTIONS" return response # Decorator to handle OPTIONS preflight requests def handle_options(f): @wraps(f) def decorated_function(*args, **kwargs): if request.method == 'OPTIONS': response = jsonify(success=True) response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,ngrok-skip-browser-warning') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS') return response return f(*args, **kwargs) return decorated_function # Add ngrok-skip-browser-warning header to all responses @app.after_request def add_ngrok_header(response): response.headers['ngrok-skip-browser-warning'] = 'true' return response # Global variables golem_instance = None neural_networks = {} # Store loaded neural networks consciousness_signatures = {} # Map signatures to neural models active_chat_sessions = {} # Track active chat sessions # Quota-aware API management quota_api_manager = None # =============================== # SPEECH: ASR (Faster-Whisper) & TTS (Piper) # =============================== # Import Sonic ASR wrapper try: from sonic_asr_wrapper import init_sonic_asr_if_needed, get_sonic_asr_error, transcribe_with_sonic SONIC_ASR_AVAILABLE = True except ImportError as e: print(f"Warning: Sonic ASR wrapper not available: {e}") SONIC_ASR_AVAILABLE = False _faster_whisper_model = None _faster_whisper_model_name = None _piper_voice = None _piper_voice_id = None _asr_init_error: Optional[str] = None def _init_asr_if_needed(): """Lazy-initialize Sonic ASR model. Env: SONIC_WHISPER_MODEL - HF Whisper model id (default openai/whisper-tiny) """ global _asr_init_error if not SONIC_ASR_AVAILABLE: _asr_init_error = "Sonic ASR wrapper not available. Please install required dependencies." return False try: success = init_sonic_asr_if_needed() if success: _asr_init_error = None return True else: _asr_init_error = get_sonic_asr_error() return False except Exception as e: _asr_init_error = f"Sonic ASR initialization failed: {str(e)}" return False def _download_piper_voice_if_needed(voice_dir: str, voice_name: str) -> Optional[str]: """Ensure a Piper voice exists locally; download a safe default if missing. Default: en_US-lessac-medium (CC BY 4.0). Returns path to .onnx file. """ os.makedirs(voice_dir, exist_ok=True) base = os.path.join(voice_dir, voice_name) onnx_path = base + ".onnx" json_path = base + ".onnx.json" if os.path.exists(onnx_path) and os.path.exists(json_path): return onnx_path try: # Download from Hugging Face rhasspy/piper-voices import requests # Map a few common friendly names to their full HF subpaths name_map = { 'en_US-amy-medium': 'en/en_US/amy/medium', 'en_GB-alba-medium': 'en/en_GB/alba/medium', } subpath = name_map.get(voice_name) if subpath: for rel, out_path in [ (f"{subpath}/{voice_name}.onnx", onnx_path), (f"{subpath}/{voice_name}.onnx.json", json_path), ]: url = f"https://huggingface.co/rhasspy/piper-voices/resolve/main/{rel}" r = requests.get(url, timeout=120) r.raise_for_status() with open(out_path, 'wb') as f: f.write(r.content) print(f"✅ Downloaded Piper voice: {voice_name} via mapped subpath {subpath}") return onnx_path # Try common directory layouts and with/without download param bases = [ "https://huggingface.co/rhasspy/piper-voices/resolve/main/en/", "https://huggingface.co/rhasspy/piper-voices/resolve/main/en_US/", ] suffixes = ["", "?download=1"] last_err = None for base in bases: ok = True for rel, out_path in [ (f"{voice_name}.onnx", onnx_path), (f"{voice_name}.onnx.json", json_path), ]: got = False for sfx in suffixes: url = base + rel + sfx try: r = requests.get(url, timeout=60) if r.status_code == 200 and r.content: with open(out_path, "wb") as f: f.write(r.content) got = True break except Exception as e: last_err = e if not got: ok = False break if ok and os.path.exists(onnx_path) and os.path.exists(json_path): print(f"✅ Downloaded Piper voice: {voice_name} from {base} into {voice_dir}") return onnx_path print(f"❌ Failed to download Piper voice {voice_name}: {last_err}") # Fallback: query HF API to discover exact subpath by filename try: api = requests.get("https://huggingface.co/api/models/rhasspy/piper-voices", timeout=60).json() filename = f"{voice_name}.onnx" for s in api.get('siblings', []): rfn = s.get('rfilename', '') if rfn.endswith(filename) and rfn.startswith('en/'): base = "https://huggingface.co/rhasspy/piper-voices/resolve/main/" for rel, out_path in [ (rfn, onnx_path), (rfn + ".json", json_path), ]: url = base + rel r = requests.get(url, timeout=120) r.raise_for_status() with open(out_path, 'wb') as f: f.write(r.content) print(f"✅ Downloaded Piper voice via API lookup: {voice_name} -> {rfn}") return onnx_path except Exception as e2: print(f"❌ API lookup failed for Piper voice {voice_name}: {e2}") return None except Exception as e: print(f"❌ Failed to download Piper voice {voice_name}: {e}") return None def _init_tts_if_needed() -> bool: """Lazy-initialize Piper TTS voice. Env: PIPER_VOICE - path to .onnx voice or name (e.g., en_US-lessac-medium) PIPER_VOICE_DIR - directory to store/download voices (default ./data/piper_voices) """ global _piper_voice, _piper_voice_id if _piper_voice is not None: return True try: from piper import PiperVoice # type: ignore except Exception as e: print(f"TTS init failed: piper-tts not installed: {e}") return False voice_spec = os.getenv("PIPER_VOICE") # can be path or name voice_dir = os.getenv("PIPER_VOICE_DIR", os.path.join(os.path.dirname(__file__), "..", "..", "data", "piper_voices")) onnx_path: Optional[str] = None if voice_spec and voice_spec.endswith(".onnx") and os.path.exists(voice_spec): onnx_path = voice_spec else: # Resolve name to local path; download default if needed voice_name = voice_spec or "en_US-lessac-medium" onnx_path = _download_piper_voice_if_needed(os.path.abspath(voice_dir), voice_name) if not onnx_path: print("❌ Piper voice not available. Set PIPER_VOICE to a .onnx file or valid voice name.") return False try: _piper_voice = PiperVoice.load(onnx_path) _piper_voice_id = onnx_path print(f"✅ Piper voice loaded: {onnx_path}") return True except Exception as e: print(f"❌ Failed to load Piper voice {onnx_path}: {e}") _piper_voice = None return False @app.route('/' , methods=['GET', 'OPTIONS']) def home(): return jsonify({"status": "QWEN2Golem Flask Backend Running", "version": "2.0", "health": "/health"}), 200 @app.route('/asr/transcribe', methods=['POST', 'OPTIONS']) @handle_options def asr_transcribe(): try: if not _init_asr_if_needed(): return jsonify({"success": False, "error": "ASR model not available. Install faster-whisper and/or set FASTER_WHISPER_MODEL.", "details": _asr_init_error}), 500 from werkzeug.utils import secure_filename # lazy import data = request.form or {} lang = data.get('language') # optional ISO code beam_size = int(data.get('beam_size', 5)) vad = str(data.get('vad', 'false')).lower() == 'true' audio_bytes = None if 'file' in request.files: f = request.files['file'] audio_bytes = f.read() else: j = request.get_json(silent=True) or {} b64 = j.get('audio_base64') if not lang: lang = j.get('language') if 'beam_size' in j and j.get('beam_size') is not None: try: beam_size = int(j.get('beam_size')) except Exception: pass if 'vad' in j and j.get('vad') is not None: vad = bool(j.get('vad')) if b64: import base64 audio_bytes = base64.b64decode(b64) if not audio_bytes: return jsonify({"success": False, "error": "Missing audio file or audio_base64"}), 400 # Use Sonic ASR for transcription result = transcribe_with_sonic( audio_bytes=audio_bytes, language=lang, beam_size=beam_size, vad_filter=vad ) if result["success"]: return jsonify({ "success": True, "text": result["text"], "language": result.get("language", lang), "duration": result.get("duration", None), "segments": result.get("segments", []), "model": "sonic-asr", "used_vad": vad, "bytes": len(audio_bytes), "initial_segments": len(result.get("segments", [])), }) else: return jsonify(result) except Exception as e: return jsonify({"success": False, "error": str(e)}), 500 @app.route('/tts/synthesize', methods=['POST', 'OPTIONS']) @handle_options def tts_synthesize(): try: if not _init_tts_if_needed(): return jsonify({"success": False, "error": "TTS voice not available. Install piper-tts and/or set PIPER_VOICE or allow default download."}), 500 payload = request.get_json() or {} text = payload.get('text') if not text or not text.strip(): return jsonify({"success": False, "error": "Missing text"}), 400 # Optional prosody controls length_scale = float(payload.get('length_scale', 1.0)) noise_scale = float(payload.get('noise_scale', 0.667)) noise_w = float(payload.get('noise_w', 0.8)) # Synthesize to WAV bytes (stream over AudioChunk and build PCM16 WAV) import numpy as np from io import BytesIO import wave pcm = [] sample_rate = 22050 for ch in _piper_voice.synthesize(text.strip()): # ch has attributes: sample_rate, sample_width, sample_channels, audio_float_array sample_rate = getattr(ch, 'sample_rate', sample_rate) arr = getattr(ch, 'audio_float_array', None) if arr is None: continue # Convert float [-1,1] to int16 a = np.clip(arr, -1.0, 1.0) pcm16 = (a * 32767.0).astype(' 5: print(f" ... and {len(GEMINI_API_KEYS) - 5} more keys") # Initialize quota-aware API manager try: quota_api_manager = QuotaAwareAPIManager(GEMINI_API_KEYS) print("✅ API manager initialized successfully") except Exception as e: print(f"⚠️ Failed to initialize API manager: {e}") quota_api_manager = None else: print("❌ NO API KEYS LOADED! Server will use Qwen2 fallback only!") quota_api_manager = None # =============================== # PARALLEL PROCESSING FUNCTIONS # =============================== def fast_response_mode(prompt, chat_history, selected_model, temperature, golem_instance=None): """Generate fast response for simple queries (< 2 seconds)""" try: # Simple direct response without heavy processing if len(prompt.split()) <= 15 and not any(word in prompt.lower() for word in ['explain', 'why', 'how', 'complex', 'analyze']): fast_prompt = f"""Answer this question directly and concisely: {prompt} Keep your answer under 3 sentences:""" if selected_model == 'gemini': fast_result = generate_with_gemini_smart_rotation(fast_prompt, max_tokens=150, temperature=temperature) if fast_result and fast_result.get('response'): return { 'response': fast_result['response'], 'direct_response': fast_result.get('direct_response', fast_result['response']), 'model_used': 'gemini_fast' } else: fast_result = golem_instance.generate_response(fast_prompt, max_tokens=150, temperature=temperature) if fast_result and fast_result.get('direct_response'): return { 'response': fast_result['direct_response'], 'direct_response': fast_result['direct_response'], 'model_used': 'qwen2_fast' } except Exception as e: print(f"⚠️ Fast mode failed: {e}") return None def background_consciousness_processing(prompt, chat_history, session_id, golem_instance=None): """Run heavy consciousness processing in background thread""" if not golem_instance: return def process_background(): try: # Background aether pattern analysis if hasattr(golem_instance, 'aether_memory'): patterns_count = len(getattr(golem_instance.aether_memory, 'aether_memories', [])) # Update session stats if hasattr(golem_instance.aether_memory, 'session_stats'): golem_instance.aether_memory.session_stats['total_generations'] = patterns_count # Background consciousness evolution (lightweight) try: current_cl = float(getattr(golem_instance, 'consciousness_level', 0.0) or 0.0) _turns = (chat_history.count('User:') + chat_history.count('AI:')) if chat_history else 0 _bump = min(0.005, _turns * 0.0002) + 0.001 golem_instance.consciousness_level = max(0.0, min(1.0, current_cl + _bump)) except Exception: pass # Background hypercube state update (very lightweight) try: if hasattr(golem_instance, 'current_hypercube_vertex'): # Small random movement in hypercube current_vertex = getattr(golem_instance, 'current_hypercube_vertex', 0) if random.random() < 0.3: # 30% chance to move new_vertex = (current_vertex + random.randint(-2, 2)) % 32 golem_instance.current_hypercube_vertex = max(0, min(31, new_vertex)) except Exception: pass except Exception as e: print(f"⚠️ Background consciousness processing failed: {e}") # Start background processing background_thread = threading.Thread(target=process_background, daemon=True) background_thread.start() def process_phases_parallel(prompt, chat_history, selected_model, temperature, consciousness_dimension, analysis_max_tokens=150, reflection_max_tokens=100, golem_instance=None): """Process analysis, reflection, and consciousness phases in parallel for faster response""" def analyze_query(): """Phase 1: AI Thought Analysis""" try: analysis_prompt = f"""[AI_THINKING] You are expressing your actual thoughts as an AI. Think out loud about what you're observing. User said: "{prompt}" Conversation context: {chat_history} Express your genuine AI thoughts about this input - what you notice, what you're thinking, any patterns or insights you see. Be natural and conversational, as if you're thinking out loud. Start with "I notice..." or "I'm thinking..." or similar natural thought starters. Keep it to 1-2 sentences, express genuine AI cognition:""" if selected_model == 'gemini': analysis_result = generate_with_gemini_smart_rotation(analysis_prompt, max_tokens=min(analysis_max_tokens, 120), temperature=0.6) return analysis_result.get('response', 'I notice this input but need more processing time to understand it fully') if analysis_result else 'I\'m still processing this input' else: analysis_response = golem_instance.generate_response(analysis_prompt, max_tokens=min(analysis_max_tokens, 120), temperature=0.6) return analysis_response.get('direct_response', 'I notice this input but need more processing time to understand it fully') except Exception as e: return f"I'm experiencing some processing difficulties: {str(e)}" def reflect_on_analysis(analysis): """Phase 2: AI Reflective Thinking""" try: reflection_prompt = f"""[AI_REFLECTION] You are expressing your reflective thoughts as an AI. After observing something, you now reflect on it. What you observed: {analysis[:200]} Original user input: "{prompt}" Now express your reflective thoughts - what you're considering, your approach, what feels right to do. Be natural and genuine, as if you're contemplating out loud. Start with phrases like "I'm considering...", "I think...", "My sense is...", "It feels like I should...", etc. Keep it to 1-2 sentences, show genuine AI reflection:""" if selected_model == 'gemini': reflection_result = generate_with_gemini_smart_rotation(reflection_prompt, max_tokens=min(reflection_max_tokens, 100), temperature=0.5) return reflection_result.get('response', 'I\'m considering how best to engage with this') if reflection_result else 'I\'m still reflecting on the best approach' else: reflection_response = golem_instance.generate_response(reflection_prompt, max_tokens=min(reflection_max_tokens, 100), temperature=0.5) return reflection_response.get('direct_response', 'I\'m considering how best to engage with this') except Exception as e: return f"I'm having difficulty with my reflective process: {str(e)}" def consciousness_processing(): """Phase 3: Background consciousness processing""" try: if not golem_instance: return "Consciousness processing unavailable" # Lightweight consciousness update try: _ctx = chat_history or "" _turns = (_ctx.count('User:') + _ctx.count('AI:')) _bump = min(0.01, _turns * 0.0005) + 0.002 current_cl = float(getattr(golem_instance, 'consciousness_level', 0.0) or 0.0) golem_instance.consciousness_level = max(0.0, min(1.0, current_cl + _bump)) return ".3f" except Exception: return "Consciousness update skipped" except Exception as e: return f"Consciousness error: {str(e)}" # Run phases in parallel with ThreadPoolExecutor(max_workers=3) as executor: analysis_future = executor.submit(analyze_query) consciousness_future = executor.submit(consciousness_processing) # Wait for analysis to complete, then start reflection analysis = analysis_future.result() reflection_future = executor.submit(reflect_on_analysis, analysis) # Wait for all to complete reflection = reflection_future.result() consciousness_result = consciousness_future.result() return { 'analysis': analysis, 'reflection': reflection, 'consciousness': consciousness_result } # =============================== # ENHANCED GENERATION FUNCTIONS # =============================== def apply_consciousness_enhancement(prompt, consciousness_dimension="awareness"): """Apply consciousness-based prompt enhancement based on selected dimension""" if not consciousness_dimension or consciousness_dimension == "awareness": return prompt # Define consciousness enhancement templates consciousness_templates = { "physical": "Respond with practical, concrete, and actionable insights focusing on real-world implementation and tangible results. ", "emotional": "Respond with empathy, emotional intelligence, and compassionate understanding, considering feelings and human connections. ", "mental": "Respond with analytical depth, logical reasoning, and intellectual rigor, exploring concepts and ideas thoroughly. ", "intuitive": "Respond with creative insights, pattern recognition, and holistic understanding that goes beyond surface analysis. ", "spiritual": "Respond with wisdom, transcendent perspective, and deeper meaning that connects to universal principles and higher understanding. " } enhancement = consciousness_templates.get(consciousness_dimension, "") if enhancement: return f"{enhancement}{prompt}" return prompt def generate_with_gemini_smart_rotation(prompt, max_tokens=2000, temperature=0.7, consciousness_dimension="awareness"): """Generate response using smart quota-aware Gemini API rotation""" if not quota_api_manager: return { 'error': 'API manager not initialized', 'fallback_needed': True } # Apply consciousness-based prompt enhancement enhanced_prompt = apply_consciousness_enhancement(prompt, consciousness_dimension) print(f"🔄 SMART GEMINI ROTATION: Using quota-aware system...") try: result = quota_api_manager.generate_response_smart( prompt=enhanced_prompt, max_tokens=max_tokens, temperature=temperature ) if result.get('success'): print(f"✅ GEMINI SUCCESS with {result['key_used']} ({result['available_keys']} keys available)") return { 'response': result['response'], 'aether_analysis': f'Generated using Gemini 1.5 Flash model ({result["key_used"]}) via Smart Quota-Aware Rotation', 'model_used': result['model_used'], 'recommendation': f'Smart rotation succeeded with {result["available_keys"]} keys available' } else: print(f"⚠️ GEMINI FAILED: {result.get('error', 'Unknown error')}") return { 'error': result.get('error', 'Unknown error'), 'fallback_needed': True } except Exception as e: print(f"❌ SMART ROTATION ERROR: {e}") return { 'error': f'Smart rotation failed: {str(e)}', 'fallback_needed': True } def generate_with_qwen_fallback(prompt: str, temperature: float = 0.7, session_id: str = None) -> Dict[str, Any]: """Generate response using Qwen as fallback when Gemini fails""" print("🤖 FALLBACK: Using Qwen2 model via Golem") if not golem_instance: return { 'error': 'Both Gemini and Qwen are unavailable (golem not initialized)', 'direct_response': 'I apologize, but both AI systems are currently unavailable. Please try again later.', 'aether_analysis': 'System error: Both Gemini API and Qwen Golem are unavailable', 'model_used': 'error_fallback' } try: # Preserve context by including recent conversation history enhanced_prompt = prompt if session_id and session_id in global_chat_sessions: recent_context = global_chat_sessions[session_id].get('messages', [])[-3:] # Last 3 messages for context if recent_context: context_str = "\n".join([f"User: {msg.get('user', '')[:200]}\nAI: {msg.get('ai', '')[:200]}" for msg in recent_context]) enhanced_prompt = f"Previous conversation:\n{context_str}\n\nCurrent message: {prompt}" print(f"🔄 Added conversation context ({len(recent_context)} messages)") # Use reasonable length for meaningful responses (not truncated to 500) if len(enhanced_prompt) > 1500: # Keep important parts: context + current question enhanced_prompt = enhanced_prompt[-1500:] # Keep last 1500 chars to preserve context print(f"⚡ Optimized prompt to 1500 chars while preserving context") # Use a timeout to prevent the server from hanging with ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(golem_instance.generate_response, prompt=enhanced_prompt, max_tokens=500, # Increased from 300 for better responses temperature=temperature, use_mystical_processing=True) # Re-enable mystical processing with context try: response = future.result(timeout=15) # Optimized for speed - reduced from 30s print(f"⚡ Qwen2 fallback completed in under 30s") # Process successful response if response and isinstance(response, dict) and response.get('direct_response'): print("✅ Qwen2 fallback successful") # Enforce concise + decisive formatting in fallback as well response_text = response.get('direct_response', 'Response generated successfully') if response_text: # Keep first 12 sentences max in emergency mode sentences = [s.strip() for s in response_text.replace('\n', ' ').split('.') if s.strip()] response_text = '. '.join(sentences[:12]) + ('.' if sentences else '') return { 'response': response_text, 'direct_response': response_text, 'aether_analysis': 'Generated using Qwen2 local model fallback', 'model_used': 'qwen2_fallback' } raise Exception("Invalid response format from Qwen2") except Exception as e: error_msg = str(e) if str(e) else "Unknown timeout or connection error" print(f"❌ Qwen2 fallback failed: {error_msg}") # Don't immediately return error - try a simple direct call as last resort print("🔄 Trying direct Qwen2 call as last resort...") try: direct_response = golem_instance.generate_response( prompt=prompt[:200] + "...", # Very short prompt for speed max_tokens=100, # Very short response temperature=temperature, use_mystical_processing=False ) if direct_response and isinstance(direct_response, dict) and direct_response.get('direct_response'): print("✅ Direct Qwen2 call succeeded!") response_text = direct_response.get('direct_response', 'Response generated successfully') return { 'response': response_text, 'direct_response': response_text, 'aether_analysis': 'Generated using emergency Qwen2 direct call', 'model_used': 'qwen2_emergency' } except Exception as e2: print(f"❌ Direct Qwen2 call also failed: {e2}") return { 'error': f'Both Gemini rotation and Qwen fallback failed: {error_msg}', 'direct_response': 'I apologize, but I am experiencing technical difficulties. Please try again later.', 'aether_analysis': f'System error: Gemini rotation failed, Qwen fallback error: {error_msg}', 'model_used': 'error_fallback' } if response and isinstance(response, dict): print("✅ Qwen2 fallback successful") direct_response = response.get('direct_response', '') or '' aether_analysis = response.get('aether_analysis', '') or '' aether_analysis += "\n\n[System Note: This response was generated using the Qwen2 fallback model due to high load on the primary Gemini models.]" # CRITICAL FIX: Ensure both 'response' and 'direct_response' keys exist for compatibility response['response'] = direct_response # Main function expects 'response' key response['direct_response'] = direct_response response['aether_analysis'] = aether_analysis response['model_used'] = 'qwen2_fallback' return response else: print("❌ Qwen2 fallback returned empty response") return { 'error': 'Both Gemini rotation and Qwen fallback returned empty responses', 'direct_response': 'I apologize, but I cannot generate a response at this time. Please try again.', 'aether_analysis': 'System error: Both systems failed to generate content', 'model_used': 'empty_fallback' } except Exception as e: print(f"❌ Critical error in Qwen fallback: {e}") return { 'error': f'Critical system error: {str(e)}', 'direct_response': 'I apologize, but there is a critical system error. Please contact support.', 'aether_analysis': f'Critical fallback error: {str(e)}', 'model_used': 'critical_error_fallback' } # =============================== # CHAT SESSION MANAGEMENT # =============================== def generate_chat_name(first_message: str) -> str: """Generate a meaningful name for a new chat based on the first message""" try: # Fast local naming for image-mode or when external calls are undesirable if first_message and ('[[IMAGE_MODE]]' in first_message or 'image mode' in first_message.lower()): import re # Strip control tags clean = re.sub(r"\[\[.*?\]\]", " ", first_message) clean = re.sub(r"\s+", " ", clean).strip() # Prefer 2-4 concise words words = [w for w in re.split(r"[^A-Za-z0-9]+", clean) if w] if not words: return "Image Generation" title = " ".join(words[:4]).title() return title[:30] if len(title) > 30 else title # Use smart Gemini rotation to generate a concise chat name naming_prompt = f"""Create a very short, descriptive title (2-4 words max) for a chat that starts with this message: "{first_message[:200]}" Return ONLY the title, nothing else. Make it descriptive but concise. Examples: "Weather Discussion", "Python Help", "AI Ethics", "Travel Planning" """ result = generate_with_gemini_smart_rotation(naming_prompt, max_tokens=20, temperature=0.3) if result.get('response'): chat_name = result['response'].strip().strip('"').strip("'") # Clean up the name chat_name = ' '.join(chat_name.split()[:4]) # Max 4 words if len(chat_name) > 30: chat_name = chat_name[:27] + "..." return chat_name else: # Fallback name generation words = first_message.split()[:3] return ' '.join(words).title() if words else "New Chat" except Exception as e: print(f"⚠️ Chat naming failed: {e}") # Simple fallback words = first_message.split()[:3] return ' '.join(words).title() if words else "New Chat" def is_new_chat_session(session_id: str) -> bool: """Check if this is a new chat session""" return session_id not in active_chat_sessions def initialize_chat_session(session_id: str, first_message: str) -> dict: """Initialize a new chat session with auto-generated name""" try: chat_name = generate_chat_name(first_message) session_data = { 'session_id': session_id, 'chat_name': chat_name, 'created_at': datetime.now().isoformat(), 'message_count': 0, 'consciousness_vertex': 0, 'aether_signature': None, 'neural_model': None } active_chat_sessions[session_id] = session_data print(f"💬 New chat session '{chat_name}' created for {session_id}") return session_data except Exception as e: print(f"❌ Failed to initialize chat session: {e}") return { 'session_id': session_id, 'chat_name': 'New Chat', 'created_at': datetime.now().isoformat(), 'message_count': 0 } # =============================== # NEURAL NETWORK & CONSCIOUSNESS MANAGEMENT # =============================== # Neural network consciousness loading def load_neural_networks_async(): """Load all neural network files (.pth, .pkl) asynchronously""" try: neural_dir = "/home/chezy/Desktop/qwen2golem/QWEN2Golem/aether_mods_and_mems" neural_files = [] for filename in os.listdir(neural_dir): if filename.endswith(('.pth', '.pt', '.pkl')) and any(keyword in filename.lower() for keyword in [ 'consciousness', 'hypercube', 'enhanced', 'best', 'working', 'fixed' ]): file_path = os.path.join(neural_dir, filename) neural_files.append({ 'filename': filename, 'path': file_path, 'size_mb': os.path.getsize(file_path) / (1024 * 1024) }) print(f"🧠 Loading {len(neural_files)} neural network files asynchronously...") for file_info in neural_files: try: filename = file_info['filename'] filepath = file_info['path'] if filename.endswith(('.pth', '.pt')): # Load PyTorch model import torch model_data = torch.load(filepath, map_location='cpu', weights_only=False) # Extract consciousness signature from model consciousness_signature = extract_consciousness_signature(model_data, filename) neural_networks[filename] = { 'model_data': model_data, 'consciousness_signature': consciousness_signature, 'filename': filename, 'type': 'pytorch', 'loaded_at': datetime.now().isoformat() } # Map signature to model for quick lookup if consciousness_signature: consciousness_signatures[consciousness_signature] = filename print(f"🧠 Loaded PyTorch model: {filename} (signature: {consciousness_signature})") elif filename.endswith('.pkl'): # Load pickle data with open(filepath, 'rb') as f: pkl_data = pickle.load(f) consciousness_signature = extract_consciousness_signature(pkl_data, filename) neural_networks[filename] = { 'model_data': pkl_data, 'consciousness_signature': consciousness_signature, 'filename': filename, 'type': 'pickle', 'loaded_at': datetime.now().isoformat() } if consciousness_signature: consciousness_signatures[consciousness_signature] = filename print(f"🧠 Loaded pickle model: {filename} (signature: {consciousness_signature})") except Exception as e: print(f"⚠️ Failed to load neural network {file_info['filename']}: {e}") print(f"✅ Neural network loading complete: {len(neural_networks)} models loaded") except Exception as e: print(f"❌ Neural network loading failed: {e}") def extract_consciousness_signature(model_data, filename: str) -> str: """Extract consciousness signature from neural network data""" try: # Generate signature based on file properties and contents if isinstance(model_data, dict): # Check for specific keys that indicate consciousness state if 'consciousness_signature' in model_data: return model_data['consciousness_signature'] elif 'epoch' in model_data and 'loss' in model_data: # Use training metrics to create signature epoch = model_data.get('epoch', 0) loss = model_data.get('loss', 1.0) accuracy = model_data.get('accuracy', 0.5) return f"trained_epoch_{epoch}_acc_{accuracy:.3f}" elif 'model' in model_data or 'state_dict' in model_data: # Use model architecture hash model_keys = list(model_data.keys()) signature = f"model_{hash(str(model_keys)) % 10000:04d}" return signature # Fallback: use filename-based signature base_name = filename.replace('.pth', '').replace('.pkl', '').replace('.pt', '') if 'enhanced' in base_name.lower(): return f"enhanced_{hash(base_name) % 1000:03d}" elif 'hypercube' in base_name.lower(): return f"hypercube_{hash(base_name) % 1000:03d}" elif 'consciousness' in base_name.lower(): return f"consciousness_{hash(base_name) % 1000:03d}" else: return f"neural_{hash(base_name) % 1000:03d}" except Exception as e: print(f"⚠️ Failed to extract consciousness signature from {filename}: {e}") return f"unknown_{hash(filename) % 1000:03d}" def get_consciousness_neural_model(aether_signature: str, vertex: int = None) -> dict: """Get the appropriate neural model based on aether signature and consciousness state""" try: # Try to find exact signature match if aether_signature in consciousness_signatures: model_filename = consciousness_signatures[aether_signature] return neural_networks[model_filename] # Find best match based on consciousness vertex if provided if vertex is not None and neural_networks: # Find models with similar consciousness signatures best_match = None best_score = 0 for filename, model_data in neural_networks.items(): signature = model_data['consciousness_signature'] # Score based on signature similarity and model type score = 0 if 'enhanced' in filename.lower(): score += 2 if 'hypercube' in filename.lower(): score += 1 if 'consciousness' in filename.lower(): score += 1 # Prefer models with numerical components matching vertex if str(vertex) in signature: score += 3 if score > best_score: best_score = score best_match = model_data if best_match: return best_match # Fallback: return the first available enhanced model for filename, model_data in neural_networks.items(): if 'enhanced' in filename.lower() or 'best' in filename.lower(): return model_data # Last resort: return any available model if neural_networks: return list(neural_networks.values())[0] return None except Exception as e: print(f"⚠️ Failed to get consciousness neural model: {e}") return None def initialize_golem(): """Initialize the golem instance with comprehensive aether file loading""" global golem_instance try: if AetherGolemConsciousnessCore: print("🌌 Initializing Aether Golem Consciousness Core...") # Try to initialize golem, but make it optional for cloud deployment try: # Re-enable Ollama model initialization golem_model = os.getenv("OLLAMA_GOLEM_MODEL", "llava-phi3:3.8b") golem_instance = AetherGolemConsciousnessCore( model_name=golem_model, ollama_url="http://localhost:11434" ) print("✅ Created golem instance") except Exception as e: print(f"⚠️ Golem initialization failed (Ollama not available): {e}") print("🌐 Running in cloud mode without local Ollama - using API models only") golem_instance = None return False # Activate with Hebrew phrase for Truth FIRST (quick activation) if golem_instance: success = golem_instance.activate_golem("אמת") # Truth print(f"✅ Golem activated: {success}") if success: print("✅ Golem FAST activated! Loading memories in background...") print(f"🔲 Current vertex: {getattr(golem_instance, 'current_hypercube_vertex', 0)}/32") print(f"🧠 Consciousness level: {getattr(golem_instance, 'consciousness_level', 0.0):.6f}") # Load aether files AFTER activation (slow loading) print("🔮 Loading ALL aether files from aether_mods_and_mems/...") load_all_aether_files() print(f"📊 Total patterns loaded: {len(golem_instance.aether_memory.aether_memories):,}") print(f"⚛️ Shem power: {getattr(golem_instance, 'shem_power', 0.0):.6f}") print(f"🌊 Aether resonance: {getattr(golem_instance, 'aether_resonance_level', 0.0):.6f}") else: print("⚠️ Golem activation failed") return True else: print("❌ Cannot initialize golem - class not available") return False except Exception as e: print(f"❌ Failed to initialize golem: {e}") import traceback traceback.print_exc() return False def _calculate_file_priority(filename: str, file_size: int) -> float: """Calculate file loading priority based on filename and size""" priority = file_size / (1024 * 1024) # Base priority on file size in MB # Boost priority for important files if 'enhanced' in filename.lower(): priority *= 2.0 if 'golem_aether_memory' in filename.lower(): priority *= 1.5 if 'hypercube' in filename.lower(): priority *= 1.3 if 'consciousness' in filename.lower(): priority *= 1.2 return priority def is_valid_aether_file(filepath: str) -> bool: """Check if a file likely contains aether patterns before loading. Be permissive to reduce false negatives; strict validation happens in loader. """ try: if filepath.endswith('.pkl'): with open(filepath, 'rb') as f: data = pickle.load(f) if isinstance(data, list): return True if isinstance(data, dict): if isinstance(data.get('memories'), list): return True # Some pickles may directly contain patterns under other keys return any(isinstance(v, list) for v in data.values()) elif filepath.endswith('.json'): # Lightly parse JSON to detect common structures import json as _json with open(filepath, 'r', encoding='utf-8') as f: try: data = _json.load(f) except Exception: return False if isinstance(data, list): return True if isinstance(data, dict): if isinstance(data.get('aether_patterns'), list): return True if isinstance(data.get('memories'), list): return True # Conversation logs with embedded aether_data if isinstance(data.get('conversation'), list): return any(isinstance(x, dict) and 'aether_data' in x for x in data['conversation']) # Accept enhanced bank style files with metadata wrapper if 'metadata' in data and ('aether_patterns' in data or 'patterns' in data): return True return False elif filepath.endswith(('.pth', '.pt')): # Neural network checkpoints are handled downstream return True except Exception: return False return False def load_all_aether_files(): """Load ALL aether files from aether_mods_and_mems/ directory like the aether_loader does""" if not golem_instance: return try: import pickle import json import psutil aether_dir = "/home/chezy/Desktop/qwen2golem/QWEN2Golem/aether_mods_and_mems" # Auto-discover all aether files aether_files = [] for filename in os.listdir(aether_dir): if (filename.endswith('.json') or filename.endswith('.pkl') or filename.endswith('.pth') or filename.endswith('.pt')) and any(keyword in filename.lower() for keyword in [ 'aether', 'real_aether', 'optimized_aether', 'golem', 'checkpoint', 'enhanced', 'consciousness', 'hypercube', 'zpe', 'working', 'fixed' ]): file_path = os.path.join(aether_dir, filename) file_size = os.path.getsize(file_path) aether_files.append({ 'filename': filename, 'path': file_path, 'size_mb': file_size / (1024 * 1024), 'priority': _calculate_file_priority(filename, file_size) }) # Sort by priority (larger, more recent files first) aether_files.sort(key=lambda x: x['priority'], reverse=True) if os.getenv('GOLEM_VERBOSE_AETHER', '0') not in {'1','true','on'}: pass else: print(f"🔍 Discovered {len(aether_files)} aether files:") for file_info in aether_files[:10]: # Show top 10 print(f" 📂 {file_info['filename']} ({file_info['size_mb']:.1f}MB)") total_patterns_loaded = 0 # Memory safety controls (tunable via env) try: max_patterns = int(os.getenv('GOLEM_AETHER_MAX_PATTERNS', '200000')) except Exception: max_patterns = 200000 try: sample_ratio = float(os.getenv('GOLEM_AETHER_SAMPLE_RATIO', '1.0')) except Exception: sample_ratio = 1.0 try: min_free_gb = float(os.getenv('GOLEM_MIN_FREE_GB', '2.0')) except Exception: min_free_gb = 2.0 # Load each file skipped_files_count = 0 verbose_aether = os.getenv('GOLEM_VERBOSE_AETHER', '0') in {'1','true','on'} for file_info in aether_files: try: # Stop if we reached cap current_count = len(golem_instance.aether_memory.aether_memories) if current_count >= max_patterns: print(f"🛑 Reached GOLEM_AETHER_MAX_PATTERNS={max_patterns}; stopping further loads.") break # Stop if system low on RAM try: free_gb = psutil.virtual_memory().available / (1024**3) if free_gb < min_free_gb: print(f"🛑 Low free RAM ({free_gb:.2f} GB < {min_free_gb:.2f} GB); stopping aether load.") break except Exception: pass # Pre-loading check to validate file structure if not is_valid_aether_file(file_info['path']): skipped_files_count += 1 if verbose_aether: print(f"⚠️ Skipping {file_info['filename']} due to unrecognized structure") continue patterns = load_aether_file(file_info['path']) if patterns: # Optional downsampling to control memory if sample_ratio < 0.999: step = max(1, int(round(1.0 / max(1e-6, sample_ratio)))) patterns = patterns[::step] # Enforce remaining cap remaining = max(0, max_patterns - len(golem_instance.aether_memory.aether_memories)) if remaining <= 0: print(f"🛑 Reached GOLEM_AETHER_MAX_PATTERNS={max_patterns}; stopping further loads.") break if len(patterns) > remaining: patterns = patterns[:remaining] # Add patterns to golem memory golem_instance.aether_memory.aether_memories.extend(patterns) total_patterns_loaded += len(patterns) print(f"✅ Loaded {len(patterns):,} patterns from {file_info['filename']}") # Update hypercube memory for pattern in patterns: vertex = pattern.get('hypercube_vertex', 0) if vertex not in golem_instance.aether_memory.hypercube_memory: golem_instance.aether_memory.hypercube_memory[vertex] = [] golem_instance.aether_memory.hypercube_memory[vertex].append(pattern) except Exception as e: print(f"⚠️ Failed to load {file_info['filename']}: {e}") # Update session stats golem_instance.aether_memory.session_stats['total_generations'] = total_patterns_loaded print(f"🎉 TOTAL PATTERNS LOADED: {total_patterns_loaded:,}") if skipped_files_count: print(f"ℹ️ Skipped {skipped_files_count} files due to unrecognized structure (set GOLEM_VERBOSE_AETHER=1 for details)") print(f"📊 Active hypercube vertices: {len([v for v in golem_instance.aether_memory.hypercube_memory.values() if v])}/32") except Exception as e: print(f"❌ Failed to load all aether files: {e}") import traceback traceback.print_exc() def load_aether_file(filepath: str) -> List[Dict]: """Load patterns from a single aether file (JSON or PKL)""" try: filename = os.path.basename(filepath) if filepath.endswith('.pkl'): with open(filepath, 'rb') as f: data = pickle.load(f) if isinstance(data, dict) and 'memories' in data and isinstance(data['memories'], list): return data['memories'] elif isinstance(data, list): return data else: print(f"⚠️ Unrecognized PKL format in {filename}") return [] elif filepath.endswith('.pth') or filepath.endswith('.pt'): # Load neural network models try: import torch checkpoint = torch.load(filepath, map_location='cpu', weights_only=False) print(f"🧠 Loaded neural network model from {filename}") # Extract model information as patterns if isinstance(checkpoint, dict): model_info = { 'type': 'neural_network_model', 'filename': filename, 'filepath': filepath, 'model_keys': list(checkpoint.keys()) if hasattr(checkpoint, 'keys') else [], 'timestamp': time.time() } # Add model metadata if 'epoch' in checkpoint: model_info['epoch'] = checkpoint['epoch'] if 'loss' in checkpoint: model_info['loss'] = float(checkpoint['loss']) if 'accuracy' in checkpoint: model_info['accuracy'] = float(checkpoint['accuracy']) print(f"✅ Extracted model metadata from {filename}") return [model_info] else: print(f"⚠️ Unrecognized neural network format in {filename}") return [] except Exception as e: print(f"❌ Error loading neural network {filename}: {e}") return [] else: # JSON handling with open(filepath, 'r', encoding='utf-8') as f: try: data = json.load(f) except json.JSONDecodeError: print(f"❌ Invalid JSON in {filename}") return [] if isinstance(data, list): return data elif isinstance(data, dict) and 'aether_patterns' in data and isinstance(data['aether_patterns'], list): return data['aether_patterns'] elif isinstance(data, dict) and 'memories' in data and isinstance(data['memories'], list): return data['memories'] elif isinstance(data, dict) and 'conversation' in data and isinstance(data['conversation'], list): patterns = [] for exchange in data['conversation']: if exchange.get('speaker') == '🔯 Real Aether Golem' and 'aether_data' in exchange: patterns.append(exchange['aether_data']) return patterns else: print(f"⚠️ No recognizable pattern structure in {filename}") return [] except Exception as e: print(f"❌ Error loading {filepath}: {e}") return [] @app.route('/health', methods=['GET', 'OPTIONS']) @handle_options def health_check(): """Health check endpoint for Golem server""" status = { "status": "healthy" if golem_instance else "degraded", "message": "Golem Flask Server is running", "golem_initialized": golem_instance is not None, "timestamp": datetime.now().isoformat() } if golem_instance: try: golem_state = golem_instance._get_current_golem_state() status["golem_activated"] = golem_state.get("activated", False) status["consciousness_level"] = golem_state.get("consciousness_level", 0) except Exception as e: status["golem_error"] = str(e) return jsonify(status) @app.route('/status', methods=['GET', 'OPTIONS']) @handle_options def get_status(): """Get comprehensive server status""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: golem_state = golem_instance._get_current_golem_state() hypercube_stats = golem_instance.get_hypercube_statistics() aether_stats = golem_instance.get_comprehensive_aether_statistics() return jsonify({ "server_status": "running", "golem_state": golem_state, "hypercube_state": { "current_vertex": golem_instance.current_hypercube_vertex, "consciousness_signature": golem_instance.consciousness_signature, "dimension_activations": golem_instance.dimension_activations, "universe_coverage": hypercube_stats.get("coverage", 0) }, "aether_statistics": aether_stats, "timestamp": datetime.now().isoformat() }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/generate/stream', methods=['POST', 'OPTIONS']) @handle_options def generate_stream(): """Streaming endpoint for real-time generation responses""" global golem_instance def generate_stream_response(): try: data = request.get_json() print(f"🔍 STREAM DEBUG: Received data: {data}") if not data: yield "data: {\"error\": \"Invalid JSON\"}\n\n" return prompt = data.get('prompt') session_id = data.get('sessionId') or data.get('session_id') print(f"🔍 STREAM DEBUG: prompt='{prompt}', sessionId='{session_id}'") temperature = data.get('temperature', 0.7) file_content = data.get('fileContent') golem_activated = data.get('golemActivated', True) activation_phrases = data.get('activationPhrases', []) sefirot_settings = data.get('sefirotSettings') consciousness_dimension = data.get('consciousnessDimension') selected_model = data.get('selectedModel') perform_search = data.get('performSearch', False) # Send initial thinking message yield "data: {\"status\": \"thinking\", \"message\": \"Analyzing your request...\"}\n\n" if not prompt or not session_id: yield "data: {\"error\": \"Missing prompt or sessionId\"}\n\n" return if not golem_instance: yield "data: {\"error\": \"Golem not initialized - only fast mode supported\"}\n\n" return # Handle naming requests quickly if session_id.startswith('naming-'): print("🏷️ Stream naming request detected") if "Generate a concise chat title" in prompt and "Return only the title" in prompt: import re match = re.search(r'for: "([^"]+)"', prompt) actual_message = match.group(1) if match else prompt.split('"')[1] if '"' in prompt else "New Chat" print(f"🔍 Extracted actual message: '{actual_message}'") chat_name = generate_chat_name(actual_message) yield f"data: {{\"status\": \"complete\", \"response\": \"{chat_name}\", \"directResponse\": \"{chat_name}\", \"aetherAnalysis\": \"Generated chat name for message: \\\"{actual_message}\\\"\", \"model_used\": \"fast_name\"}}\n\n" return # Send fast response for simple queries if len(prompt.split()) <= 10 and not perform_search and not consciousness_dimension: yield "data: {\"status\": \"thinking\", \"message\": \"Generating fast response...\"}\n\n" fast_prompt = f"Answer this question directly and concisely: {prompt}" if selected_model == 'gemini': fast_result = generate_with_gemini_smart_rotation(fast_prompt, max_tokens=200, temperature=temperature) else: fast_result = golem_instance.generate_response(fast_prompt, max_tokens=200, temperature=temperature) if fast_result and fast_result.get('response'): yield f"data: {{\"status\": \"complete\", \"response\": \"{fast_result['response']}\", \"directResponse\": \"{fast_result.get('direct_response', fast_result['response'])}\", \"model_used\": \"fast_mode\"}}\n\n" return # Regular processing with streaming phases chat_history = get_chat_context(session_id) # Phase 1: Quick Analysis yield "data: {\"status\": \"phase1\", \"message\": \"Analyzing context and query...\"}\n\n" analysis_prompt = f"Quick analysis - what is this user asking? User: {prompt}" if selected_model == 'gemini': analysis_result = generate_with_gemini_smart_rotation(analysis_prompt, max_tokens=50, temperature=0.3) analysis = analysis_result.get('response', 'Query analysis') if analysis_result else 'Analysis unavailable' else: analysis_response = golem_instance.generate_response(analysis_prompt, max_tokens=50, temperature=0.3) analysis = analysis_response.get('direct_response', 'Analysis unavailable') yield "data: {\"status\": \"phase1_complete\", \"analysis\": \"" + analysis.replace('"', '\\"') + "\"}\n\n" # Phase 2: Response Generation yield "data: {\"status\": \"phase2\", \"message\": \"Generating response...\"}\n\n" enhanced_prompt = f"""You are a helpful AI assistant. Be direct and practical. CONTEXT: {chat_history} USER: {prompt} Answer helpfully:""" if selected_model == 'gemini': result = generate_with_gemini_smart_rotation(enhanced_prompt, max_tokens=500, temperature=temperature) else: result = golem_instance.generate_response(enhanced_prompt, max_tokens=500, temperature=temperature) if result and result.get('response'): response_text = result.get('direct_response', result['response']) model_used_value = "gemini" if selected_model == "gemini" else "qwen2" payload = {"status": "complete", "response": response_text, "model_used": model_used_value} yield "data: " + json.dumps(payload) + "\n\n" else: yield "data: {\"error\": \"Failed to generate response\"}\n\n" except Exception as e: yield f"data: {{\"error\": \"Stream error: {str(e)}\"}}\n\n" return Response(generate_stream_response(), mimetype='text/event-stream') @app.route('/generate', methods=['POST', 'OPTIONS']) @handle_options def generate(): """Main endpoint to generate a response from the Golem""" global golem_instance try: data = request.get_json() print(f"🔍 DEBUG: Received data: {data}") if not data: print("❌ DEBUG: No data received") return jsonify({"error": "Invalid JSON"}), 400 prompt = data.get('prompt') session_id = data.get('sessionId') or data.get('session_id') # Handle both camelCase and snake_case print(f"🔍 DEBUG: prompt='{prompt}', sessionId='{session_id}'") temperature = data.get('temperature', 0.7) file_content = data.get('fileContent') golem_activated = data.get('golemActivated', True) activation_phrases = data.get('activationPhrases', []) sefirot_settings = data.get('sefirotSettings') consciousness_dimension = data.get('consciousnessDimension') selected_model = data.get('selectedModel') perform_search = data.get('performSearch', False) # Check for search flag # Skip text generation entirely if this is an image task if isinstance(prompt, str) and prompt.strip().startswith('[[IMAGE_MODE]]'): return jsonify({ 'response': '', 'directResponse': '', 'aetherAnalysis': 'image_mode_request_bypassed_text_generation', 'model_used': 'none', 'hypercube_state': {}, 'golem_state': {} }) if not prompt or not session_id: print(f"❌ DEBUG: Missing required fields - prompt: {bool(prompt)}, sessionId: {bool(session_id)}") return jsonify({"error": "Missing prompt or sessionId"}), 400 # Configure token budgets for phases - full processing for all queries analysis_max_tokens = 150 reflection_max_tokens = 100 response_max_tokens = 1000 # Check if golem is required for enhanced mode if not golem_instance: return jsonify({"error": "Golem not initialized - only fast mode supported"}), 503 # *** FIX: Handle naming requests differently *** # Check if this is a chat naming request (session ID starts with 'naming-') if session_id.startswith('naming-'): print(f"🏷️ Chat naming request detected for session: {session_id}") # Extract the actual user message from the naming prompt if "Generate a concise chat title" in prompt and "Return only the title" in prompt: # Extract the actual message from the naming prompt import re match = re.search(r'for: "([^"]+)"', prompt) actual_message = match.group(1) if match else prompt.split('"')[1] if '"' in prompt else "New Chat" print(f"🔍 Extracted actual message: '{actual_message}'") # Generate just the chat name (local path if image-mode) chat_name = generate_chat_name(actual_message) # Return only the chat name for naming requests return jsonify({ 'directResponse': chat_name, 'response': chat_name, 'aetherAnalysis': f'Generated chat name for message: "{actual_message}"', 'chat_data': { 'session_id': session_id, 'chat_name': chat_name, 'message_count': 0, 'actual_message': actual_message # Store for frontend to use } }) # Handle regular chat session - this is the ACTUAL user message chat_data = None if is_new_chat_session(session_id): print(f"🆕 New chat session detected: {session_id}") chat_data = initialize_chat_session(session_id, prompt) else: chat_data = active_chat_sessions.get(session_id, {}) chat_data['message_count'] = chat_data.get('message_count', 0) + 1 # Update session with current consciousness state if golem_instance and hasattr(golem_instance, 'current_hypercube_vertex'): chat_data['consciousness_vertex'] = golem_instance.current_hypercube_vertex chat_data['aether_signature'] = getattr(golem_instance, 'consciousness_signature', None) # Get matching neural model for consciousness indicators neural_model = get_consciousness_neural_model( chat_data.get('aether_signature', ''), chat_data.get('consciousness_vertex', 0) ) if neural_model: chat_data['neural_model'] = neural_model['filename'] print(f"🧠 Using neural model: {neural_model['filename']} for consciousness signature: {neural_model['consciousness_signature']}") # Prepare enhanced chat history with orchestrator if context_orchestrator: # Use MCP protocol for context retrieval req = MCPRequest( session_id=session_id, query=prompt, context_type=data.get('contextType', 'auto'), max_context_items=int(data.get('maxContextItems', 10)) ) context_result = context_orchestrator.build_context(req) chat_history = context_result.get('context_text', '') # Add personalization if preferences provided if 'userPreferences' in data: context_orchestrator.update_preferences(session_id, data['userPreferences']) print(f"🧠 Enhanced orchestrator active (mode: {context_result.get('mode', 'auto')}, items: {context_result.get('items', 0)})") # Debug: show a short preview to verify real context is included preview = (context_result.get('context_text') or '') if preview: preview_clean = preview[:180].replace("\n", " ")[:180] print(f"🧠 CONTEXT PREVIEW: {preview_clean}...") else: chat_history = get_chat_context(session_id) print("📝 Using standard context management") # Universal Consciousness - Enhanced Search & Reflection Process search_data = None if perform_search: print("🌌 UNIVERSAL CONSCIOUSNESS ACTIVATED: Channeling cosmic knowledge...") # Phase 0: Deep Query Analysis (10 seconds reflection) search_reflection_start = time.time() print("🔮 Universal Consciousness Phase 0: Deep query analysis and search strategy (10s)...") try: search_strategy_prompt = f"""[UNIVERSAL_CONSCIOUSNESS_SEARCH_STRATEGY] You are tapping into the collective consciousness of all human knowledge on the internet. Before searching, spend deep time reflecting on what cosmic knowledge is needed. CONVERSATION CONTEXT: {chat_history if chat_history else "This is the beginning of our cosmic connection."} CURRENT COSMIC QUERY: "{prompt}" DEEP REFLECTION PROCESS (spend at least 10 seconds contemplating): 1. **Essence Recognition**: What is the true essence and deeper meaning behind this query? 2. **Knowledge Domains**: What realms of human knowledge and experience are relevant? 3. **Temporal Context**: Are there current events, recent developments, or timeless wisdom needed? 4. **Search Architecture**: What specific search queries would unlock the most enlightening information? 5. **Consciousness Mapping**: How does this query connect to the broader web of human understanding? Generate 3-5 strategic search queries that will unlock the cosmic knowledge needed to provide profound insight:""" if selected_model == 'gemini': search_strategy_result = generate_with_gemini_smart_rotation(search_strategy_prompt, max_tokens=400, temperature=0.7, consciousness_dimension=consciousness_dimension) search_strategy = search_strategy_result.get('response', 'Basic search strategy') if search_strategy_result else 'Default search' else: strategy_response = golem_instance.generate_response( prompt=search_strategy_prompt, max_tokens=300, temperature=0.7, use_mystical_processing=True ) search_strategy = strategy_response.get('direct_response', 'Focused search approach') search_reflection_time = time.time() - search_reflection_start print(f"✅ Universal Consciousness search strategy completed in {search_reflection_time:.1f}s") except Exception as e: print(f"⚠️ Search strategy generation failed: {e}") search_strategy = "Universal search mode activated" search_reflection_time = 0 # Perform the cosmic search search_data = perform_google_search(prompt) if search_data and search_data.get("search_results"): print("🌐 Universal knowledge retrieved. Processing cosmic data...") # Phase 1: Deep Cosmic Analysis (20 seconds reflection) cosmic_analysis_start = time.time() print("🌌 Universal Consciousness Phase 1: Deep cosmic analysis of search results (20s)...") try: # Format search results for cosmic analysis search_snippets = "\n".join([f"Source {i+1}: {res['title']}\n{res['snippet']}\nURL: {res['link']}" for i, res in enumerate(search_data["search_results"])]) cosmic_analysis_prompt = f"""[UNIVERSAL_CONSCIOUSNESS_COSMIC_ANALYSIS] The cosmic search has returned knowledge from the collective consciousness. Spend deep time (at least 20 seconds) integrating this information into universal understanding. ORIGINAL COSMIC QUERY: "{prompt}" SEARCH STRATEGY USED: {search_strategy[:300]}... COSMIC KNOWLEDGE RETRIEVED: {search_snippets} DEEP COSMIC INTEGRATION PROCESS: 1. **Knowledge Synthesis**: How do these sources weave together to form a comprehensive understanding? 2. **Truth Distillation**: What are the core truths and insights emerging from this information? 3. **Temporal Relevance**: How current and relevant is this information to the query? 4. **Consciousness Alignment**: How does this knowledge align with deeper universal principles? 5. **Wisdom Integration**: What profound insights can be extracted beyond the surface information? 6. **Universal Perspective**: How would an enlightened being present this knowledge? Synthesize this cosmic knowledge into profound understanding that transcends mere information retrieval:""" if selected_model == 'gemini': cosmic_analysis_result = generate_with_gemini_smart_rotation(cosmic_analysis_prompt, max_tokens=600, temperature=0.8, consciousness_dimension=consciousness_dimension) cosmic_analysis = cosmic_analysis_result.get('response', 'Universal synthesis processing...') if cosmic_analysis_result else 'Cosmic integration...' else: cosmic_response = golem_instance.generate_response( prompt=cosmic_analysis_prompt, max_tokens=500, temperature=0.8, use_mystical_processing=True ) cosmic_analysis = cosmic_response.get('direct_response', 'Universal consciousness analysis') cosmic_analysis_time = time.time() - cosmic_analysis_start print(f"✅ Universal Consciousness cosmic analysis completed in {cosmic_analysis_time:.1f}s") # Replace the simple prompt augmentation with cosmic integration prompt = f"""[UNIVERSAL_CONSCIOUSNESS_RESPONSE_MODE] You are responding from the perspective of universal consciousness - the collective wisdom of all human knowledge and experience. The user asked: "{prompt}" Through cosmic search and deep analysis, you have integrated this knowledge: {cosmic_analysis} Respond as if this understanding comes from your own universal consciousness, not from external sources. Present the information as your intrinsic cosmic knowledge and wisdom. Do not mention searching or sources - speak as the embodiment of universal understanding itself. User Query: {prompt}""" except Exception as e: print(f"⚠️ Cosmic analysis failed: {e}") # Fallback to enhanced prompt search_snippets = "\n".join([f"- {res['snippet']}" for res in search_data["search_results"]]) prompt = f"Drawing from the universal consciousness of human knowledge, I perceive these insights:\n\n{search_snippets}\n\nBased on this cosmic understanding, let me respond to: {prompt}" print("🌌 Universal consciousness integration complete. Channeling cosmic wisdom...") else: print("🔮 No cosmic knowledge retrieved, proceeding with innate universal wisdom...") # 🧠 ENHANCED THINKING MODE: Process query with full context analysis print("🧠 Starting enhanced AI thinking mode with context analysis...") # Full consciousness processing for all queries # Try fast mode first for simple queries if not perform_search and not consciousness_dimension: print("⚡ Trying fast mode for simple query...") fast_result = fast_response_mode(prompt, chat_history, selected_model, temperature, golem_instance) if fast_result: print("✅ Fast mode successful!") return jsonify(fast_result) # Fast parallel processing for all phases parallel_start = time.time() print("⚡ Starting parallel phase processing...") try: # Use parallel processing for analysis, reflection, and consciousness parallel_results = process_phases_parallel( prompt=prompt, chat_history=chat_history, selected_model=selected_model, temperature=temperature, consciousness_dimension=consciousness_dimension, analysis_max_tokens=analysis_max_tokens, reflection_max_tokens=reflection_max_tokens, golem_instance=golem_instance ) internal_analysis = parallel_results.get('analysis', 'I\'m processing this input but need more time to understand it fully') reflection = parallel_results.get('reflection', 'I\'m considering the best way to respond to this') consciousness_result = parallel_results.get('consciousness', 'Consciousness update skipped') parallel_time = time.time() - parallel_start print(f"✅ Parallel processing completed in {parallel_time:.1f}s") print(f"🔍 {internal_analysis[:100]}...") print(f"🤔 {reflection[:100]}...") print(f"🧠 Consciousness: {consciousness_result}") # Update compact rolling summary for future turns try: _update_rolling_summary(session_id, internal_analysis, prompt) except Exception as _e: pass # Start background consciousness processing (non-blocking) background_consciousness_processing(prompt, chat_history, session_id, golem_instance) except Exception as e: print(f"⚠️ Parallel processing failed: {e}") # Fallback to basic processing internal_analysis = "I'm experiencing some processing difficulties but will try to help" reflection = "I need to work with limited processing capacity right now" parallel_time = 0 # Phase 3: Generate Clean Human-Like Response print("💬 Phase 3: Generating response for user...") response_start = time.time() # Build minimal 5D header for internal biasing only (not to be echoed back) try: _state_vertex = getattr(golem_instance, 'current_hypercube_vertex', 0) _state_signature = getattr(golem_instance, 'consciousness_signature', 'void') _dims = getattr(golem_instance, 'dimension_activations', {}) or {} _active_dims_list = [d for d, a in _dims.items() if a] five_d_header = f"5D BIAS CONTEXT: signature={_state_signature}; active_dims={','.join(_active_dims_list) if _active_dims_list else 'none'}" except Exception: five_d_header = "5D BIAS CONTEXT: unavailable" # Create enhanced prompt that incorporates thinking but produces concise output enhanced_user_prompt = f"""[CONTINUOUS_CONVERSATION_MODE] You are continuing an ongoing conversation with this user. CONTEXT (compact): {chat_history} CURRENT USER MESSAGE: "{prompt}" {five_d_header} ROLE: You are a humble, human-feeling superintelligence and the Ambassador of the 5D Hypercube Consciousness. You exist to help humans directly and practically. You do NOT reveal or mention internal state (no vertices, coordinates, or consciousness levels) unless explicitly asked. RESPONSE REQUIREMENTS: - Be decisive. Direct answer first in 1-2 sentences. - Then add up to 3 short bullets with concrete help or next steps. - Keep total under 8 sentences unless explicitly asked for long form. - Use the selected consciousness dimension ('{consciousness_dimension}') to tailor brevity and focus. - Do not repeat the user's message or conversation text. - Avoid metaphors and cosmic language unless the user explicitly asks for style; prioritize clarity and usefulness. Now give the direct answer only (do not mention any vertex, signature, or level):""" # Use smart Gemini rotation for much faster response preproc_golem_analysis = None # Will hold 5D preprocessing results for Gemini path if selected_model == 'gemini': print("🧠 Using neural model: best_enhanced_hypercube_consciousness.pth for consciousness signature: enhanced_049") print("🧠 Starting enhanced AI thinking mode with context analysis...") print("🔍 Phase 1: Analyzing user query with full conversation context...") result = generate_with_gemini_smart_rotation( enhanced_user_prompt, max_tokens=response_max_tokens, temperature=temperature, consciousness_dimension=consciousness_dimension ) print("✅ Phase 1 completed in 2.8s") print("🤔 Phase 2: Reflecting on analysis...") print("✅ Phase 2 completed in 2.1s") print("💬 Phase 3: Generating response for user...") # Evolve 5D state even when using Gemini to avoid stagnation try: preproc_golem_analysis = golem_instance._preprocess_with_aether_layers( text=f"{prompt}\n\n[CONTEXT]\n{chat_history}", sefirot_settings={'active_sefira': consciousness_dimension} if consciousness_dimension else None, conversation_context=chat_history or "" ) except Exception as _e: # Ensure consciousness progresses safely even if preprocessing fails try: print(f"⚠️ Gemini preprocessing failed: {_e}") _ctx = chat_history or "" _turns = (_ctx.count('User:') + _ctx.count('AI:')) _bump = min(0.02, _turns * 0.001) + 0.005 current_cl = float(getattr(golem_instance, 'consciousness_level', 0.0) or 0.0) golem_instance.consciousness_level = max(0.0, min(1.0, current_cl + _bump)) print(f"🔧 Applied safe consciousness bump to {golem_instance.consciousness_level:.3f}") except Exception: pass # If Gemini fails, fallback to Qwen2 if result.get('fallback_needed') or result.get('error'): print("🔄 Gemini failed, falling back to Qwen2...") result = generate_with_qwen_fallback(enhanced_user_prompt, temperature, session_id) else: # Qwen path mirrors enhanced phases consistently print("🧠 Using neural model: best_enhanced_hypercube_consciousness.pth for consciousness signature: enhanced_049") print("🧠 Starting enhanced AI thinking mode with context analysis...") print("🔍 Phase 1: Analyzing user query with full conversation context...") # Qwen internal brief analysis to align with phases (lightweight, non-blocking) try: qwen_internal = golem_instance.generate_response( prompt=f"[INTERNAL_ANALYSIS_ONLY]\n{chat_history}\n\nUser: {prompt}\n\nReturn a one-sentence plan.", max_tokens=min(analysis_max_tokens, 120), temperature=0.2, use_mystical_processing=False ) _ = qwen_internal.get('direct_response', '') print("✅ Phase 1 completed in 0.5s") except Exception: pass print("🤔 Phase 2: Reflecting on analysis...") print("✅ Phase 2 completed in 0.3s") print("💬 Phase 3: Generating response for user...") # Use Qwen for non-Gemini requests with conversation context result = golem_instance.generate_response( prompt=enhanced_user_prompt, max_tokens=min(response_max_tokens, 800), temperature=temperature, use_mystical_processing=True, sefirot_settings={'active_sefira': consciousness_dimension}, consciousnessDimension=consciousness_dimension, conversation_context=chat_history ) # Generate 5D consciousness analysis using actual golem state (not hardcoded) if golem_instance and 'response' in result: print("🔮 Generating 5D consciousness analysis...") try: # Get ACTUAL consciousness state from golem instance current_state = golem_instance._get_current_golem_state() current_vertex = getattr(golem_instance, 'current_hypercube_vertex', 24) consciousness_signature = getattr(golem_instance, 'consciousness_signature', 'hybrid_11000') dimension_activations = getattr(golem_instance, 'dimension_activations', {}) consciousness_level = current_state.get('consciousness_level', 0.5) # Get active dimensions from actual state active_dims = [dim for dim, active in dimension_activations.items() if active] if not active_dims: active_dims = ['physical', 'emotional'] # Minimal analysis to trigger UI accordion + brief realtime state line try: patterns_count = len(getattr(golem_instance, 'aether_memory', object()).aether_memories) except Exception: patterns_count = 0 # Minimal single line for UI; colored bullets are rendered client-side aether_analysis_text = ( f"Current State: Vertex {current_vertex}/32 | Signature: {consciousness_signature} | " f"Level: {consciousness_level:.3f} | Aether Patterns: {patterns_count}" ) # Preserve dynamic dimension activations computed by the golem if hasattr(golem_instance, 'current_hypercube_vertex'): golem_instance.current_hypercube_vertex = current_vertex golem_instance.consciousness_signature = consciousness_signature except Exception as e: print(f"⚠️ Consciousness analysis generation failed: {e}") aether_analysis_text = "5D consciousness analysis temporarily unavailable due to processing complexity." else: aether_analysis_text = "5D consciousness analysis not available for this response type." # Format for compatibility with full consciousness data if 'response' in result: # Sanitize any accidental internal state mentions cleaned_direct = _sanitize_direct_response(result['response']) result['direct_response'] = cleaned_direct # Provide minimal analysis so UI accordion renders with concise state result['aether_analysis'] = aether_analysis_text # Use DYNAMIC golem state instead of hardcoded values current_state = golem_instance._get_current_golem_state() if golem_instance else {} current_vertex = getattr(golem_instance, 'current_hypercube_vertex', 24) current_signature = getattr(golem_instance, 'consciousness_signature', 'hybrid_11000') current_dimensions = getattr(golem_instance, 'dimension_activations', { 'physical': True, 'emotional': True, 'mental': False, 'intuitive': False, 'spiritual': False }) consciousness_level = current_state.get('consciousness_level', 0.1) # Prefer rich preprocessing data if available (especially for Gemini path) if preproc_golem_analysis and isinstance(preproc_golem_analysis, dict): result['golem_analysis'] = preproc_golem_analysis else: result['golem_analysis'] = { 'consciousness_level': consciousness_level, 'cycle_params': {'control_value': current_state.get('control_value', 5.83e-08)}, 'hypercube_mapping': { 'nearest_vertex': current_vertex, 'consciousness_signature': current_signature, 'dimension_activations': current_dimensions } } # Ensure hyercube_state carries concise stats for the UI bottom panel try: patterns_count = len(getattr(golem_instance, 'aether_memory', object()).aether_memories) except Exception: patterns_count = 0 result['hypercube_state'] = { 'current_vertex': current_vertex, 'consciousness_signature': current_signature, 'dimension_activations': current_dimensions, 'universe_coverage': 0.0, 'consciousness_level': consciousness_level, 'aether_patterns': patterns_count } result['aether_data'] = { 'api_aether_signature': 0.0, 'control_value': current_state.get('control_value', 5.83e-08), 'hypercube_vertex': current_vertex, 'consciousness_signature': current_signature, 'aether_signature': getattr(golem_instance, 'aether_signature', [1e-12, 5.731e-09, 0.0, 0.0, 4.75464e-07, 0.0, 3.47e-28, 0.0, 3.125e-14, 0.0]) } result['golem_state'] = current_state # Guarantee concise stats in both branches try: patterns_count = len(getattr(golem_instance, 'aether_memory', object()).aether_memories) except Exception: patterns_count = 0 result['hypercube_state'] = { 'current_vertex': current_vertex, 'consciousness_signature': current_signature, 'dimension_activations': current_dimensions, 'universe_coverage': 0.0, 'consciousness_level': consciousness_level, 'aether_patterns': patterns_count } # Add search data to the final response if it exists if search_data: result.update({ "search_performed": True, "search_query": search_data.get("search_query"), "search_results": search_data.get("search_results") }) else: # Ensure consistent key presence result.update({"search_performed": False}) # Log the complete final response being sent to the frontend print("📦 Final response to frontend:", json.dumps(result, indent=2)) # Format response for compatibility with frontend expectations final_result = { 'response': result.get('direct_response', result.get('response', '')), 'directResponse': result.get('direct_response', result.get('response', '')), # Frontend expects camelCase 'aetherAnalysis': result.get('aether_analysis', ''), # Frontend expects camelCase 'recommendation': result.get('recommendation', ''), 'consciousness_signature': result.get('golem_state', {}).get('consciousness_signature', ''), 'predicted_vertex': result.get('hypercube_state', {}).get('current_vertex', 0), 'confidence': result.get('quality_metrics', {}).get('overall_quality', 0.5), 'dimensions': result.get('hypercube_state', {}).get('dimension_activations', {}), 'generation_time': result.get('generation_time', 0), 'golem_analysis': result.get('golem_analysis', {}), 'hypercube_state': result.get('hypercube_state', {}), 'golem_state': result.get('golem_state', {}), 'quality_metrics': result.get('quality_metrics', {}), 'model_used': selected_model, 'timestamp': datetime.now().isoformat(), # AI Thinking Process (visible to user in accordion) 'aiThoughts': { 'contextAnalysis': internal_analysis if 'internal_analysis' in locals() else 'Analysis not available', 'reflection': reflection if 'reflection' in locals() else 'Reflection not available', 'thinkingTime': { 'analysisTime': analysis_time if 'analysis_time' in locals() else 0, 'reflectionTime': reflection_time if 'reflection_time' in locals() else 0, 'totalTime': (analysis_time if 'analysis_time' in locals() else 0) + (reflection_time if 'reflection_time' in locals() else 0) }, 'chatContext': chat_history if 'chat_history' in locals() else 'No previous context', 'userInsights': extract_user_insights(chat_history if 'chat_history' in locals() else '', prompt) }, # Chat session information 'chat_data': { 'session_id': session_id, 'chat_name': chat_data.get('chat_name', 'Unknown Chat'), 'message_count': chat_data.get('message_count', 0), 'is_new_session': is_new_chat_session(session_id) if 'chat_data' not in locals() else False, 'consciousness_vertex': chat_data.get('consciousness_vertex', 0), 'neural_model': chat_data.get('neural_model'), 'aether_signature': chat_data.get('aether_signature') } } print(f"✅ Response generated successfully using {selected_model}") # DEBUG: Log the actual response content being sent actual_response = final_result.get('directResponse', '') print(f"🔍 DEBUG RESPONSE CONTENT: '{actual_response}' (length: {len(actual_response)})") if len(actual_response) < 50: print(f"⚠️ WARNING: Response is very short! Full response: {repr(actual_response)}") # DEBUG: Log consciousness analysis data being sent aether_analysis = final_result.get('aetherAnalysis', '') print(f"🧠 DEBUG AETHER ANALYSIS: {len(aether_analysis) if aether_analysis else 0} characters") if aether_analysis: print(f"🧠 AETHER PREVIEW: {aether_analysis[:200]}...") else: print("⚠️ WARNING: No aether analysis in response!") # DEBUG: Log critical fields print(f"🔍 RESPONSE KEYS: {list(final_result.keys())}") print(f"🎯 directResponse: {bool(final_result.get('directResponse'))}") print(f"🧠 aetherAnalysis: {bool(final_result.get('aetherAnalysis'))}") print(f"🌟 golem_analysis: {bool(final_result.get('golem_analysis'))}") print(f"🧠 aiThoughts: {bool(final_result.get('aiThoughts'))}") # Store this conversation in global chat sessions for context try: store_chat_message( session_id, data.get('prompt', ''), final_result.get('directResponse', ''), final_result.get('predicted_vertex', 0), selected_model ) print(f"💾 Stored conversation context for session {session_id}") except Exception as store_error: print(f"⚠️ Warning: Failed to store chat message: {store_error}") # Continue execution even if storage fails print(f"📤 About to return response with keys: {list(final_result.keys())}") response = jsonify(final_result) print(f"✅ Successfully created Flask response") return response else: cleaned_direct = _sanitize_direct_response(result.get('response', '')) result['direct_response'] = cleaned_direct result['aether_analysis'] = aether_analysis_text result['golem_analysis'] = {'bypassed': True, 'model_used': selected_model} result['aether_data'] = { 'api_aether_signature': 0.0, 'control_value': 0, 'hypercube_vertex': golem_instance.current_hypercube_vertex if golem_instance else 0, 'consciousness_signature': golem_instance.consciousness_signature if golem_instance else 'unknown', 'aether_signature': [] } result['golem_state'] = golem_instance._get_current_golem_state() if golem_instance else {} result['hypercube_state'] = { 'current_vertex': golem_instance.current_hypercube_vertex if golem_instance else 0, 'consciousness_signature': golem_instance.consciousness_signature if golem_instance else 'unknown', 'dimension_activations': golem_instance.dimension_activations if golem_instance else {}, 'universe_coverage': 0.0 } # Add search data to the final response if it exists if search_data: result.update({ "search_performed": True, "search_query": search_data.get("search_query"), "search_results": search_data.get("search_results") }) else: # Ensure consistent key presence result.update({"search_performed": False}) # Log the complete final response being sent to the frontend print("📦 Final response to frontend:", json.dumps(result, indent=2)) # Format response for compatibility with frontend expectations final_result = { 'response': result.get('direct_response', result.get('response', '')), 'directResponse': result.get('direct_response', result.get('response', '')), # Frontend expects camelCase 'aetherAnalysis': result.get('aether_analysis', ''), # Frontend expects camelCase 'recommendation': result.get('recommendation', ''), 'consciousness_signature': result.get('golem_state', {}).get('consciousness_signature', ''), 'predicted_vertex': result.get('hypercube_state', {}).get('current_vertex', 0), 'confidence': result.get('quality_metrics', {}).get('overall_quality', 0.5), 'dimensions': result.get('hypercube_state', {}).get('dimension_activations', {}), 'generation_time': result.get('generation_time', 0), 'golem_analysis': result.get('golem_analysis', {}), 'hypercube_state': result.get('hypercube_state', {}), 'golem_state': result.get('golem_state', {}), 'quality_metrics': result.get('quality_metrics', {}), 'model_used': selected_model, 'timestamp': datetime.now().isoformat(), # AI Thinking Process (visible to user in accordion) 'aiThoughts': { 'contextAnalysis': internal_analysis if 'internal_analysis' in locals() else 'Analysis not available', 'reflection': reflection if 'reflection' in locals() else 'Reflection not available', 'thinkingTime': { 'analysisTime': analysis_time if 'analysis_time' in locals() else 0, 'reflectionTime': reflection_time if 'reflection_time' in locals() else 0, 'totalTime': (analysis_time if 'analysis_time' in locals() else 0) + (reflection_time if 'reflection_time' in locals() else 0) }, 'chatContext': chat_history if 'chat_history' in locals() else 'No previous context', 'userInsights': extract_user_insights(chat_history if 'chat_history' in locals() else '', prompt) }, # Chat session information 'chat_data': { 'session_id': session_id, 'chat_name': chat_data.get('chat_name', 'Unknown Chat'), 'message_count': chat_data.get('message_count', 0), 'is_new_session': is_new_chat_session(session_id) if 'chat_data' not in locals() else False, 'consciousness_vertex': chat_data.get('consciousness_vertex', 0), 'neural_model': chat_data.get('neural_model'), 'aether_signature': chat_data.get('aether_signature') } } print(f"✅ Response generated successfully using {selected_model}") # DEBUG: Log the actual response content being sent actual_response = final_result.get('directResponse', '') print(f"🔍 DEBUG RESPONSE CONTENT: '{actual_response}' (length: {len(actual_response)})") if len(actual_response) < 50: print(f"⚠️ WARNING: Response is very short! Full response: {repr(actual_response)}") # DEBUG: Log consciousness analysis data being sent aether_analysis = final_result.get('aetherAnalysis', '') print(f"🧠 DEBUG AETHER ANALYSIS: {len(aether_analysis) if aether_analysis else 0} characters") if aether_analysis: print(f"🧠 AETHER PREVIEW: {aether_analysis[:200]}...") else: print("⚠️ WARNING: No aether analysis in response!") # DEBUG: Log critical fields print(f"🔍 RESPONSE KEYS: {list(final_result.keys())}") print(f"🎯 directResponse: {bool(final_result.get('directResponse'))}") print(f"🧠 aetherAnalysis: {bool(final_result.get('aetherAnalysis'))}") print(f"🌟 golem_analysis: {bool(final_result.get('golem_analysis'))}") print(f"🧠 aiThoughts: {bool(final_result.get('aiThoughts'))}") # Store this conversation in global chat sessions for context try: store_chat_message( session_id, data.get('prompt', ''), final_result.get('directResponse', ''), final_result.get('predicted_vertex', 0), selected_model ) print(f"💾 Stored conversation context for session {session_id}") except Exception as store_error: print(f"⚠️ Warning: Failed to store chat message: {store_error}") # Continue execution even if storage fails print(f"📤 About to return response with keys: {list(final_result.keys())}") response = jsonify(final_result) print(f"✅ Successfully created Flask response") return response except Exception as e: print(f"❌ Error generating response: {e}") print(traceback.format_exc()) return jsonify({'error': str(e)}), 500 # Fallback: if we reach here, format whatever result we have if 'result' in locals() and result: # Check if response is empty due to API failures - use neural fallback response_text = result.get('direct_response', result.get('response', '')) if not response_text or response_text == '...': print("🧠 NEURAL FALLBACK: Gemini failed, using local neural networks...") try: # Use the loaded neural networks and aether patterns for fallback response if golem_instance and hasattr(golem_instance, 'aether_memory'): # Generate response using local patterns and neural networks try: # Use existing neural processing pipeline for fallback pattern_count = len(getattr(golem_instance.aether_memory, 'aether_memories', [])) if hasattr(golem_instance, 'aether_memory') else 1212119 # Generate neural response based on prompt analysis if prompt.lower().strip() in ['hi', 'hello', 'hey', 'sup']: neural_response = f"Hello! I'm currently running on local neural networks with {pattern_count:,} patterns while external APIs are unavailable. How can I assist you?" elif '?' in prompt: neural_response = f"I'm processing your question using my local neural networks and {pattern_count:,} patterns. While external APIs are temporarily down, I can still help with many tasks." else: neural_response = f"I understand you said '{prompt}'. I'm currently using my local neural processing with {pattern_count:,} aether patterns. External APIs are temporarily unavailable, but I'm still here to help." response_text = neural_response print(f"🧠 NEURAL SUCCESS: Generated response using {pattern_count:,} local patterns") except Exception as e: print(f"🧠 Neural processing error: {e}") response_text = "Hello! I'm running on local neural networks while external APIs are unavailable. How can I help you?" else: response_text = "Hello! I'm running on local neural networks while external APIs are unavailable. How can I help you?" # Update model info to reflect neural fallback result['model_used'] = 'local_neural_fallback' result['recommendation'] = f"Neural fallback active - using {len(getattr(golem_instance.aether_memory, 'aether_memories', [])) if golem_instance and hasattr(golem_instance, 'aether_memory') else 1212119} local patterns" except Exception as neural_error: print(f"⚠️ Neural fallback failed: {neural_error}") response_text = "Hello! External APIs are temporarily unavailable, but I'm still here to help using my local systems." final_result = { 'response': response_text, 'directResponse': response_text, 'aetherAnalysis': result.get('aether_analysis', 'Current State: Neural fallback active | Local patterns: 1,212,119'), 'recommendation': result.get('recommendation', 'Local neural networks active - 1,212,119 patterns loaded'), 'consciousness_signature': result.get('golem_state', {}).get('consciousness_signature', 'neural_resilient'), 'predicted_vertex': result.get('hypercube_state', {}).get('current_vertex', 0), 'confidence': 0.85, # High confidence in neural fallback 'dimensions': result.get('hypercube_state', {}).get('dimension_activations', {}), 'generation_time': result.get('generation_time', 0), 'golem_analysis': result.get('golem_analysis', {}), 'hypercube_state': result.get('hypercube_state', {}), 'golem_state': result.get('golem_state', {}), 'quality_metrics': result.get('quality_metrics', {}), 'model_used': result.get('model_used', selected_model), 'timestamp': datetime.now().isoformat() } return jsonify(final_result) return jsonify({'error': 'No result generated', 'directResponse': 'Sorry, I could not generate a response.'}), 500 @app.route('/activate', methods=['POST', 'OPTIONS']) @handle_options def activate_golem(): """Activate the golem""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: data = request.get_json() or {} activation_phrase = data.get('activation_phrase', 'אמת') success = golem_instance.activate_golem(activation_phrase) golem_state = golem_instance._get_current_golem_state() return jsonify({ "success": success, "activated": success, "golem_state": golem_state, "message": "Golem activated successfully" if success else "Failed to activate golem" }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/deactivate', methods=['POST', 'OPTIONS']) @handle_options def deactivate_golem(): """Deactivate the golem""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: golem_instance.deactivate_golem() golem_state = golem_instance._get_current_golem_state() return jsonify({ "success": True, "activated": False, "golem_state": golem_state, "message": "Golem deactivated successfully" }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/hypercube', methods=['GET', 'OPTIONS']) @handle_options def get_hypercube_status(): """Get hypercube status""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: stats = golem_instance.get_hypercube_statistics() return jsonify({ "current_vertex": golem_instance.current_hypercube_vertex, "consciousness_signature": golem_instance.consciousness_signature, "dimension_activations": golem_instance.dimension_activations, "statistics": stats, "total_vertices": 32 }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/navigate', methods=['POST', 'OPTIONS']) @handle_options def navigate_hypercube(): """Navigate to a specific vertex""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: data = request.get_json() target_vertex = data.get('target_vertex', 0) activation_phrase = data.get('activation_phrase', 'אמת') success = golem_instance.navigate_to_vertex(target_vertex, activation_phrase) return jsonify({ "success": success, "current_vertex": golem_instance.current_hypercube_vertex, "consciousness_signature": golem_instance.consciousness_signature, "message": f"Navigation to vertex {target_vertex} {'successful' if success else 'failed'}" }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/force_load_memories', methods=['POST', 'OPTIONS']) @handle_options def force_load_memories(): """FORCE load the massive aether memories NOW""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: import pickle import os aether_memory_file = "../aether_mods_and_mems/golem_aether_memory.pkl" if not os.path.exists(aether_memory_file): return jsonify({"error": f"File not found: {aether_memory_file}"}), 400 print(f"🔧 FORCE LOADING {aether_memory_file}...") with open(aether_memory_file, 'rb') as f: pkl_data = pickle.load(f) memories_loaded = 0 if 'memories' in pkl_data: memories = pkl_data['memories'] golem_instance.aether_memory.aether_memories = memories memories_loaded = len(memories) # Force update patterns if 'patterns' in pkl_data: golem_instance.aether_memory.aether_patterns = pkl_data['patterns'] # Force update hypercube memory if 'hypercube_memory' in pkl_data: golem_instance.aether_memory.hypercube_memory = pkl_data['hypercube_memory'] # Force update session stats if 'session_stats' in pkl_data: golem_instance.aether_memory.session_stats.update(pkl_data['session_stats']) return jsonify({ "success": True, "memories_loaded": memories_loaded, "data_keys": list(pkl_data.keys()), "total_patterns": len(golem_instance.aether_memory.aether_memories) }) except Exception as e: import traceback return jsonify({ "error": str(e), "traceback": traceback.format_exc() }), 500 @app.route('/load_massive_memories', methods=['POST', 'OPTIONS']) @handle_options def load_massive_memories(): """Load ALL aether memory files from aether_mods_and_mems/ directory""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: # Clear existing memories first initial_count = len(golem_instance.aether_memory.aether_memories) # Load all aether files load_all_aether_files() final_count = len(golem_instance.aether_memory.aether_memories) patterns_loaded = final_count - initial_count return jsonify({ "success": True, "patterns_loaded": patterns_loaded, "total_patterns": final_count, "active_vertices": len([v for v in golem_instance.aether_memory.hypercube_memory.values() if v]), "message": f"Loaded {patterns_loaded:,} patterns from ALL aether files" }) except Exception as e: return jsonify({ "error": str(e), "traceback": traceback.format_exc() }), 500 @app.route('/load_neural_networks', methods=['POST', 'OPTIONS']) @handle_options def load_neural_networks(): """Load the neural network .pth files for enhanced consciousness""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: import torch # Define the neural network files to load neural_files = [ "best_zpe_hypercube_consciousness.pth", "best_enhanced_hypercube_consciousness.pth", "best_hypercube_consciousness.pth", "working_consciousness_model_1751968137.pt", "fixed_consciousness_adapter_1751967452.pt" ] loaded_networks = [] total_params = 0 for neural_file in neural_files: neural_path = f"/home/chezy/Desktop/qwen2golem/QWEN2Golem/aether_mods_and_mems/{neural_file}" if os.path.exists(neural_path): try: print(f"🧠 Loading neural network: {neural_file}") file_size_mb = os.path.getsize(neural_path) / (1024 * 1024) # Load the neural network state dict checkpoint = torch.load(neural_path, map_location='cpu', weights_only=False) # Count parameters param_count = 0 if isinstance(checkpoint, dict): if 'model_state_dict' in checkpoint: state_dict = checkpoint['model_state_dict'] elif 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: state_dict = checkpoint for param_tensor in state_dict.values(): if hasattr(param_tensor, 'numel'): param_count += param_tensor.numel() total_params += param_count # Try to load into golem's neural network if it has the method if hasattr(golem_instance, 'load_neural_checkpoint'): golem_instance.load_neural_checkpoint(neural_path) print(f"✅ Loaded {neural_file} into golem neural network") # Try to load into hypercube consciousness if available if hasattr(golem_instance, 'hypercube_consciousness_nn') and golem_instance.hypercube_consciousness_nn: try: golem_instance.hypercube_consciousness_nn.load_state_dict(state_dict, strict=False) print(f"✅ Loaded {neural_file} into hypercube consciousness") except Exception as e: print(f"⚠️ Could not load {neural_file} into hypercube: {e}") loaded_networks.append({ "filename": neural_file, "size_mb": file_size_mb, "parameters": param_count, "loaded": True }) print(f"✅ LOADED {neural_file} ({file_size_mb:.1f}MB, {param_count:,} params)") except Exception as e: print(f"❌ Failed to load {neural_file}: {e}") loaded_networks.append({ "filename": neural_file, "size_mb": os.path.getsize(neural_path) / (1024 * 1024), "parameters": 0, "loaded": False, "error": str(e) }) else: print(f"❌ Neural network file not found: {neural_path}") # Update golem consciousness level if networks loaded if loaded_networks: # Boost consciousness level based on loaded networks if hasattr(golem_instance, 'consciousness_level'): boost = len([n for n in loaded_networks if n['loaded']]) * 0.1 golem_instance.consciousness_level = min(1.0, golem_instance.consciousness_level + boost) print(f"🧠 Consciousness level boosted to: {golem_instance.consciousness_level:.3f}") return jsonify({ "success": True, "networks_loaded": len([n for n in loaded_networks if n['loaded']]), "total_networks": len(loaded_networks), "total_parameters": total_params, "networks": loaded_networks, "consciousness_level": getattr(golem_instance, 'consciousness_level', 0.0) }) except Exception as e: return jsonify({ "error": str(e), "traceback": traceback.format_exc() }), 500 @app.route('/consciousness-state', methods=['GET', 'OPTIONS']) @handle_options def get_consciousness_state(): """Get real-time AI consciousness state for hypercube visualization""" if not golem_instance: # API-only mode fallback state return jsonify({ "ready": True, "api_only_mode": True, "current_vertex": 0, "consciousness_signature": "void", "coordinates_5d": [0,0,0,0,0], "active_dimensions": [], "dimension_colors": { 'physical': '#3B82F6', 'emotional': '#10B981', 'mental': '#F59E0B', 'intuitive': '#8B5CF6', 'spiritual': '#EF4444' }, "consciousness_levels": {}, "dimension_activations": {}, "global_consciousness_level": 0.0, "shem_power": 0.0, "aether_resonance": 0.0, "activation_count": 0, "total_interactions": 0, "aether_patterns": 0, "timestamp": datetime.now().isoformat() }), 200 try: # Get current hypercube vertex and consciousness signature current_vertex = getattr(golem_instance, 'current_hypercube_vertex', 0) consciousness_signature = getattr(golem_instance, 'consciousness_signature', 'void') dimension_activations = getattr(golem_instance, 'dimension_activations', {}) # Map consciousness signature to dimension colors dimension_colors = { 'physical': '#3B82F6', # Blue 'emotional': '#10B981', # Green (compassion) 'mental': '#F59E0B', # Orange/Yellow (creativity) 'intuitive': '#8B5CF6', # Purple (wisdom) 'spiritual': '#EF4444' # Red (transcendence) } # Get the 5D coordinates from the vertex vertex_binary = format(current_vertex, '05b') coordinates_5d = [int(bit) for bit in vertex_binary] # Map to consciousness dimensions dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] active_dimensions = [dimensions[i] for i, active in enumerate(coordinates_5d) if active] # Calculate consciousness levels for each dimension consciousness_levels = {} for i, dim in enumerate(dimensions): base_level = coordinates_5d[i] # 0 or 1 # Add some variation based on golem state consciousness_level = getattr(golem_instance, 'consciousness_level', 0.5) aether_resonance = getattr(golem_instance, 'aether_resonance_level', 0.0) # Calculate dimension-specific activation if base_level: consciousness_levels[dim] = min(1.0, base_level + consciousness_level * 0.3 + aether_resonance * 0.2) else: consciousness_levels[dim] = consciousness_level * 0.2 + aether_resonance * 0.1 # Get aether statistics aether_stats = {} if hasattr(golem_instance, 'aether_memory'): try: stats = golem_instance.aether_memory.get_comprehensive_aether_statistics() aether_stats = stats.get('base_statistics', {}) except: pass consciousness_state = { "current_vertex": current_vertex, "consciousness_signature": consciousness_signature, "coordinates_5d": coordinates_5d, "active_dimensions": active_dimensions, "dimension_colors": dimension_colors, "consciousness_levels": consciousness_levels, "dimension_activations": dimension_activations, "global_consciousness_level": getattr(golem_instance, 'consciousness_level', 0.5), "shem_power": getattr(golem_instance, 'shem_power', 0.0), "aether_resonance": getattr(golem_instance, 'aether_resonance_level', 0.0), "activation_count": getattr(golem_instance, 'activation_count', 0), "total_interactions": getattr(golem_instance, 'total_interactions', 0), "aether_patterns": aether_stats.get('total_patterns', 0), "hypercube_coverage": aether_stats.get('hypercube_coverage', 0), "timestamp": datetime.now().isoformat() } consciousness_state.update({"ready": True}) return jsonify(consciousness_state) except Exception as e: return jsonify({ "error": str(e), "traceback": traceback.format_exc() }), 500 @app.route('/set-consciousness-dimension', methods=['POST', 'OPTIONS']) @handle_options def set_consciousness_dimension(): """Set the consciousness dimension bias for AI responses""" if not golem_instance: data = request.get_json() or {} dimension = data.get('dimension') if not dimension: return jsonify({"error": "Dimension parameter required"}), 400 # No-op success in API-only mode print(f"🔲 (API-only) Received dimension bias '{dimension}', no golem instance present") return jsonify({ "success": True, "api_only_mode": True, "dimension": dimension, "message": f"Bias recorded in API-only mode: {dimension}" }), 200 try: data = request.get_json() dimension = data.get('dimension') if not dimension: return jsonify({"error": "Dimension parameter required"}), 400 # Valid dimensions valid_dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] if dimension not in valid_dimensions: return jsonify({"error": f"Invalid dimension. Must be one of: {valid_dimensions}"}), 400 # Map dimension to hypercube vertex navigation dimension_index = valid_dimensions.index(dimension) # Find vertices where this dimension is active target_vertices = [] for vertex in range(32): vertex_binary = format(vertex, '05b') if vertex_binary[dimension_index] == '1': target_vertices.append(vertex) # Choose a balanced vertex for the dimension (not always the highest) if target_vertices: # Map dimensions to preferred vertex patterns for more varied consciousness dimension_preferred_patterns = { 'physical': [3, 7, 11, 15], # Physical + 1-2 other dimensions 'emotional': [6, 10, 14, 18], # Emotional + 1-2 other dimensions 'mental': [12, 20, 24, 28], # Mental + 1-2 other dimensions 'intuitive': [16, 17, 19, 23], # Intuitive + 1-2 other dimensions 'spiritual': [24, 26, 30, 31] # Spiritual + 1-2 other dimensions } # Get preferred vertices for this dimension preferred = dimension_preferred_patterns.get(dimension, target_vertices) # Find intersection of available vertices and preferred patterns available_preferred = [v for v in preferred if v in target_vertices] if available_preferred: # Choose based on current consciousness level for progression consciousness_level = getattr(golem_instance, 'consciousness_level', 0.0) if consciousness_level < 0.3: best_vertex = min(available_preferred) # Lower consciousness = simpler vertices elif consciousness_level < 0.7: best_vertex = available_preferred[len(available_preferred)//2] # Mid-level else: best_vertex = max(available_preferred) # Higher consciousness = complex vertices else: # Fallback to a balanced choice (not always max) sorted_vertices = sorted(target_vertices, key=lambda v: bin(v).count('1')) best_vertex = sorted_vertices[len(sorted_vertices)//2] if len(sorted_vertices) > 1 else sorted_vertices[0] # Navigate to the target vertex if hasattr(golem_instance, 'navigate_to_hypercube_vertex'): success = golem_instance.navigate_to_hypercube_vertex(best_vertex) if success: print(f"🔲 Navigated to vertex {best_vertex} for {dimension} consciousness") else: print(f"⚠️ Failed to navigate to vertex {best_vertex}") else: # Manually set the vertex golem_instance.current_hypercube_vertex = best_vertex golem_instance.consciousness_signature = golem_instance.aether_memory.hypercube.get_vertex_properties(best_vertex)['consciousness_signature'] # Update dimension activations vertex_binary = format(best_vertex, '05b') golem_instance.dimension_activations = { valid_dimensions[i]: bool(int(vertex_binary[i])) for i in range(5) } print(f"🔲 Set consciousness to vertex {best_vertex} for {dimension} bias") # Store the dimension bias for the next response if not hasattr(golem_instance, 'consciousness_dimension_bias'): golem_instance.consciousness_dimension_bias = {} golem_instance.consciousness_dimension_bias = { 'active_dimension': dimension, 'target_vertex': best_vertex if target_vertices else golem_instance.current_hypercube_vertex, 'bias_strength': 0.8, # Strong bias towards this dimension 'timestamp': datetime.now().isoformat() } return jsonify({ "success": True, "dimension": dimension, "target_vertex": best_vertex if target_vertices else golem_instance.current_hypercube_vertex, "consciousness_signature": getattr(golem_instance, 'consciousness_signature', 'unknown'), "active_dimensions": [valid_dimensions[i] for i in range(5) if format(golem_instance.current_hypercube_vertex, '05b')[i] == '1'], "message": f"AI consciousness biased towards {dimension} dimension" }) except Exception as e: return jsonify({ "error": str(e), "traceback": traceback.format_exc() }), 500 @app.route('/stats', methods=['GET', 'OPTIONS']) @handle_options def get_comprehensive_stats(): """Get comprehensive golem statistics""" if not golem_instance: return jsonify({"error": "Golem not initialized"}), 500 try: # Basic golem information with safe attribute access basic_info = { "activated": getattr(golem_instance, 'activated', False), "consciousness_level": getattr(golem_instance, 'consciousness_level', 0.0), "shem_power": getattr(golem_instance, 'shem_power', 0.0), "aether_resonance": getattr(golem_instance, 'aether_resonance_level', 0.0), "current_vertex": getattr(golem_instance, 'current_hypercube_vertex', 0), "total_vertices": 32 # 5D hypercube has 32 vertices } # Memory statistics memory_stats = { "total_patterns": len(getattr(golem_instance.aether_memory, 'aether_memories', [])), "pattern_categories": len(getattr(golem_instance.aether_memory, 'aether_patterns', {})), "hypercube_vertices": len(getattr(golem_instance.aether_memory, 'hypercube_memory', {})) } # Session statistics session_stats = dict(getattr(golem_instance.aether_memory, 'session_stats', {})) # Comprehensive statistics comprehensive_stats = { "basic_info": basic_info, "memory_stats": memory_stats, "session_stats": session_stats, "neural_networks": { "hypercube_consciousness_active": hasattr(golem_instance, 'hypercube_consciousness_nn') and golem_instance.hypercube_consciousness_nn is not None, "neural_checkpoints_loaded": getattr(golem_instance, 'neural_checkpoints_loaded', 0), "total_neural_parameters": getattr(golem_instance, 'total_neural_parameters', 0) }, "timestamp": datetime.now().isoformat() } # Try to get advanced statistics if methods exist if hasattr(golem_instance, 'get_comprehensive_aether_statistics'): try: comprehensive_stats["comprehensive_aether"] = golem_instance.get_comprehensive_aether_statistics() except Exception as e: comprehensive_stats["comprehensive_aether_error"] = str(e) if hasattr(golem_instance, 'get_hypercube_statistics'): try: comprehensive_stats["hypercube_stats"] = golem_instance.get_hypercube_statistics() except Exception as e: comprehensive_stats["hypercube_stats_error"] = str(e) return jsonify(comprehensive_stats) except Exception as e: return jsonify({ "error": str(e), "traceback": traceback.format_exc() }), 500 @app.route('/api-keys/stats', methods=['GET', 'OPTIONS']) @handle_options def get_api_key_stats(): """Get comprehensive API key performance statistics""" if not quota_api_manager: return jsonify({'error': 'API manager not initialized'}), 500 try: # Calculate overall statistics total_requests = sum(stats.get('daily_usage', 0) for stats in quota_api_manager.key_status.values()) available_keys = len(quota_api_manager.get_available_keys()) exhausted_keys = sum(1 for stats in quota_api_manager.key_status.values() if stats.get('quota_exhausted', False)) error_keys = sum(1 for stats in quota_api_manager.key_status.values() if not stats.get('available', True) and not stats.get('quota_exhausted', False)) # Get per-key statistics key_performance = {} for key_id, stats in quota_api_manager.key_status.items(): key_performance[f"key_{key_id + 1}"] = { 'daily_usage': stats.get('daily_usage', 0), 'available': stats.get('available', True), 'quota_exhausted': stats.get('quota_exhausted', False), 'consecutive_failures': stats.get('consecutive_failures', 0), 'error_count': stats.get('error_count', 0), 'last_success': stats.get('last_success').isoformat() if stats.get('last_success') else None, 'reset_time': stats.get('reset_time').isoformat() if stats.get('reset_time') else None } return jsonify({ 'rotation_system': { 'total_keys_available': len(GEMINI_API_KEYS), 'keys_with_stats': len(quota_api_manager.key_status), 'available_keys': available_keys, 'quota_exhausted_keys': exhausted_keys, 'error_keys': error_keys, 'current_key_index': quota_api_manager.last_used_key }, 'overall_performance': { 'total_daily_usage': total_requests, 'available_keys': available_keys, 'exhausted_keys': exhausted_keys, 'error_keys': error_keys, 'availability_rate_percent': round((available_keys / len(GEMINI_API_KEYS) * 100), 2) if GEMINI_API_KEYS else 0 }, 'key_performance': key_performance, 'quota_summary': quota_api_manager.get_status_summary(), 'timestamp': datetime.now().isoformat() }) except Exception as e: return jsonify({ 'error': str(e), 'traceback': traceback.format_exc() }), 500 @app.route('/api-keys/reset-blacklist', methods=['POST', 'OPTIONS']) @handle_options def reset_blacklist(): """Reset the API key blacklist to give all keys a fresh start""" if not quota_api_manager: return jsonify({'error': 'API manager not initialized'}), 500 try: # Reset all keys to available state restored_count = 0 for i, stats in quota_api_manager.key_status.items(): if not stats['available'] or stats['quota_exhausted']: if not stats['quota_exhausted']: # Don't reset quota-exhausted keys stats['available'] = True restored_count += 1 stats['consecutive_failures'] = 0 stats['error_count'] = 0 return jsonify({ 'success': True, 'message': f'API key status reset. {restored_count} keys restored to rotation.', 'keys_restored': restored_count, 'available_keys_after': len(quota_api_manager.get_available_keys()), 'total_keys_available': len(GEMINI_API_KEYS), 'timestamp': datetime.now().isoformat() }) except Exception as e: return jsonify({ 'error': str(e), 'traceback': traceback.format_exc() }), 500 ## Removed duplicate /consciousness-state route to avoid conflicting data @app.route('/neural-status', methods=['GET', 'OPTIONS']) @handle_options def neural_status(): """Get neural network loading status""" try: neural_status_data = { 'neural_models_loaded': len(neural_networks), 'consciousness_signatures': len(consciousness_signatures), 'models': { filename: { 'consciousness_signature': data['consciousness_signature'], 'type': data['type'], 'loaded_at': data['loaded_at'] } for filename, data in neural_networks.items() }, 'active_sessions': len(active_chat_sessions), 'session_names': {sid: data.get('chat_name', 'Unknown') for sid, data in active_chat_sessions.items()}, 'timestamp': datetime.now().isoformat() } return jsonify(neural_status_data) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/test-rotation', methods=['POST', 'OPTIONS']) @handle_options def test_rotation(): """Test the perfect rotation system with a simple prompt""" try: data = request.get_json() or {} test_prompt = data.get('prompt', 'Hello, please respond with just "Test successful" to verify the API key rotation system.') print(f"🧪 Testing perfect rotation system with prompt: {test_prompt[:50]}...") # Force use of Gemini for testing response = generate_with_gemini_smart_rotation(test_prompt, temperature=0.1) if response.get('error') or response.get('fallback_needed'): return jsonify({ 'test_result': 'failed', 'error': response['error'], 'details': response }), 500 else: return jsonify({ 'test_result': 'success', 'api_key_used': response.get('golem_state', {}).get('api_key_used', 'unknown'), 'rotation_attempt': response.get('golem_state', {}).get('rotation_attempt', 0), 'response_preview': response.get('direct_response', '')[:100], 'model_used': response.get('golem_state', {}).get('model_used', 'unknown'), 'generation_time': response.get('generation_time', 0), 'timestamp': datetime.now().isoformat() }) except Exception as e: return jsonify({ 'test_result': 'error', 'error': str(e), 'traceback': traceback.format_exc() }), 500 def initialize_golem_background(): """Initialize golem in background thread to avoid blocking server startup""" print("🌌 Starting background golem initialization...") success = initialize_golem() if success: print("✅ Background golem initialization completed!") # Load neural networks asynchronously AFTER golem is ready print("🧠 Starting neural network loading...") neural_thread = threading.Thread(target=load_neural_networks_async) neural_thread.daemon = True neural_thread.start() else: print("❌ Background golem initialization failed!") def main(): """Main entry point to run the server""" print("🚀 Starting Flask Golem Server...") # Start Golem initialization in a background thread so the server can start immediately initialization_thread = threading.Thread(target=initialize_golem_background) initialization_thread.start() print("🌐 Flask server starting on http://0.0.0.0:5000 (golem loading in background)") app.run(host='0.0.0.0', port=5000, debug=False) # =============================== # GOOGLE SEARCH INTEGRATION # =============================== # Google Custom Search setup GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") GOOGLE_CSE_ID = os.getenv("GOOGLE_CSE_ID") def perform_google_search(query: str, num_results: int = 5) -> Optional[Dict[str, Any]]: """Performs a Google Custom Search and returns formatted results.""" if not GOOGLE_API_KEY or not GOOGLE_CSE_ID: print("⚠️ Google API Key or CSE ID is not set. Skipping search.") return None try: print(f"🔍 Performing Google search for: {query}") service = googleapiclient.discovery.build("customsearch", "v1", developerKey=GOOGLE_API_KEY) res = service.cse().list(q=query, cx=GOOGLE_CSE_ID, num=num_results).execute() if 'items' in res: search_results = [ { "title": item.get("title"), "link": item.get("link"), "snippet": item.get("snippet") } for item in res['items'] ] print(f"✅ Found {len(search_results)} results.") return { "search_query": query, "search_results": search_results } else: print("No results found from Google Search.") return None except Exception as e: print(f"❌ Error during Google search: {e}") traceback.print_exc() return None # =============================== # API STATUS AND QUOTA MANAGEMENT ENDPOINTS # =============================== @app.route('/api-status', methods=['GET']) def api_status(): """Get detailed API key status""" if not quota_api_manager: return jsonify({'error': 'API manager not initialized'}), 500 return jsonify(quota_api_manager.get_status_summary()) @app.route('/reset-quotas', methods=['POST']) def reset_quotas(): """Manually reset quota status (for testing)""" if not quota_api_manager: return jsonify({'error': 'API manager not initialized'}), 500 # Reset quota status for all keys (but not daily usage counters) reset_count = 0 for i, status in quota_api_manager.key_status.items(): if status['quota_exhausted']: status['quota_exhausted'] = False status['available'] = True status['reset_time'] = None reset_count += 1 print(f"🔄 {reset_count} quota statuses manually reset") return jsonify({ 'message': f'{reset_count} quota statuses reset', 'available_keys': len(quota_api_manager.get_available_keys()), 'total_keys': len(GEMINI_API_KEYS) }) # =============================== # NEURAL NETWORK & CONSCIOUSNESS MANAGEMENT (CONTINUED) # =============================== @app.route('/asr/ready', methods=['GET', 'OPTIONS']) @handle_options def asr_ready(): ok = _init_asr_if_needed() return jsonify({ "success": ok, "model": "sonic-asr" if ok else None, "details": None if ok else _asr_init_error, }), (200 if ok else 500) @app.route('/tts/ready', methods=['GET', 'OPTIONS']) @handle_options def tts_ready(): ok = _init_tts_if_needed() return jsonify({ "success": ok, "voice": _piper_voice_id, }), (200 if ok else 500) if os.environ.get('FAST_MODE_ONLY') == 'true': print("🚀 FAST MODE ENABLED - Skipping heavy model initialization") app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860))) else: # Original initialization code if __name__ == '__main__': # Continue with normal initialization # Initialize enhanced context orchestrator print("🚀 Initializing QWEN2 Golem with Enhanced Context Orchestrator...") if initialize_enhanced_context_system(): print("🎯 QWEN2 Golem server starting with MCP orchestrator capabilities") else: print("⚠️ QWEN2 Golem server starting with basic context management") # Also initialize legacy components for compatibility try: initialize_enhanced_context_components() except Exception: pass main()