File size: 8,520 Bytes
6cd4037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b4723
6cd4037
 
58b4723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd4037
 
58b4723
 
6cd4037
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b8bc8
 
 
6cd4037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import csv
import streamlit as st
import numpy as np
import cv2
from PIL import Image
from functions import image_show
import pandas as pd 
from data_func import make_new_data,update,save_and_push
import os
from huggingface_hub import Repository
import reader

st.markdown("""
        <style>
               .block-container {
                    padding-top: 1rem;
                    padding-bottom: 0rem;
                    padding-left: 1rem;
                    padding-right: 1rem;
                }
        </style>
        """, unsafe_allow_html=True)



def pull_read(DATASET_REPO_URL,HF_TOKEN,DATA_FILE):
    
    repo = Repository(
        local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
        )
    
    with open(DATA_FILE) as csvfile:
        df = pd.read_csv(csvfile) 
        df = pd.DataFrame(df)
    
    return repo, df

@st.cache
def convert_df_to_csv(df):
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
  return df.to_csv().encode('utf-8')  


def screen_scan_main():
    teacher_code = st.text_input("Ogretmen kodu:",key=12)
    password = st.text_input("Sıfre:",key=17,type="password")
    
    teacher_code = str(teacher_code)
    password = str(password)
    
    DATA_FILENAME = f"{teacher_code}.csv"
    DATA_FILENAME = str(DATA_FILENAME)
    
    image_file = st.file_uploader(
        "Tarama Yapmak Icin Optigi Yukleyin", type=['jpeg', 'png', 'jpg', 'webp'])
    if image_file != None:
        repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
                                      DATA_FILE = os.path.join("data", DATA_FILENAME),
                                      HF_TOKEN = "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")
        repo.git_pull()
                    
        if str(repo_df["ogrenci_no"][0]) == password:
            st.write("Giriş başarılı")       
            answer_code = st.radio(
            "Cevap Anahtari Kodu",
            ('1', '2', '3',"4","5"))
            answer_code = int(answer_code)      
            global myIndexs 
                        
            image = Image.open(image_file)
            image = np.array(image.convert('RGB'))
                    #(ans_txt,pathImage, save_images= True)
            resim_list,myIndexs =reader.reader(pathImage=image,save_images=False) 
              
            #myIndex1_str =", ".join(map(str, myIndexs[0]))
            st.write("Cevap Anahtari")
            df = pd.DataFrame(
    [
       {"Sorular": "Ders 1 Soru1 ", "Cevap": myIndexs[0][0]},
       {"Sorular": "Ders 1 Soru2", "Cevap": myIndexs[0][1]},
       {"Sorular": "Ders 1 Soru3", "Cevap": myIndexs[0][2]},
       {"Sorular": "Ders 1 Soru4 ", "Cevap": myIndexs[0][3]},
       {"Sorular": "Ders 1 Soru5", "Cevap": myIndexs[0][4]},
       {"Sorular": "Ders 1 Soru6 ", "Cevap": myIndexs[0][5]},
       {"Sorular": "Ders 1 Soru7", "Cevap": myIndexs[0][6]},
       {"Sorular": "Ders 1 Soru8", "Cevap": myIndexs[0][7]},
       {"Sorular": "Ders 1 Soru9 ", "Cevap": myIndexs[0][8]},
       {"Sorular": "Ders 1 Soru10", "Cevap": myIndexs[0][9]},
        {"Sorular": "Ders 1 Soru11 ", "Cevap": myIndexs[0][10]},
       {"Sorular": "Ders 1 Soru12", "Cevap": myIndexs[0][11]},
       {"Sorular": "Ders 1 Soru13", "Cevap": myIndexs[0][12]},
       {"Sorular": "Ders 1 Soru14 ", "Cevap": myIndexs[0][13]},
       {"Sorular": "Ders 1 Soru15", "Cevap": myIndexs[0][14]},
       {"Sorular": "Ders 1 Soru16 ", "Cevap": myIndexs[0][15]},
       {"Sorular": "Ders 1 Soru17", "Cevap": myIndexs[0][16]},
       {"Sorular": "Ders 1 Soru18", "Cevap": myIndexs[0][17]},
       {"Sorular": "Ders 1 Soru19 ", "Cevap": myIndexs[0][18]},
       {"Sorular": "Ders 1 Soru20", "Cevap": myIndexs[0][19]},
        {"Sorular": "Ders 2 Soru1 ", "Cevap": myIndexs[1][0]},
       {"Sorular": "Ders 2 Soru2", "Cevap": myIndexs[1][1]},
       {"Sorular": "Ders 2 Soru3", "Cevap": myIndexs[1][2]},
       {"Sorular": "Ders 2 Soru4 ", "Cevap": myIndexs[1][3]},
       {"Sorular": "Ders 2 Soru5", "Cevap": myIndexs[1][4]},
       {"Sorular": "Ders 2 Soru6 ", "Cevap": myIndexs[1][5]},
       {"Sorular": "Ders 2 Soru7", "Cevap": myIndexs[1][6]},
       {"Sorular": "Ders 2 Soru8", "Cevap": myIndexs[1][7]},
       {"Sorular": "Ders 2 Soru9 ", "Cevap": myIndexs[1][8]},
       {"Sorular": "Ders 2 Soru10", "Cevap": myIndexs[1][9]},
        {"Sorular": "Ders 2 Soru11 ", "Cevap": myIndexs[1][10]},
       {"Sorular": "Ders 2 Soru12", "Cevap": myIndexs[1][11]},
       {"Sorular": "Ders 2 Soru13", "Cevap": myIndexs[1][12]},
       {"Sorular": "Ders 2 Soru14 ", "Cevap": myIndexs[1][13]},
       {"Sorular": "Ders 2 Soru15", "Cevap": myIndexs[1][14]},
       {"Sorular": "Ders 2 Soru16 ", "Cevap": myIndexs[1][15]},
       {"Sorular": "Ders 2 Soru17", "Cevap": myIndexs[1][16]},
       {"Sorular": "Ders 2 Soru18", "Cevap": myIndexs[1][17]},
       {"Sorular": "Ders 2 Soru19 ", "Cevap": myIndexs[1][18]},
       {"Sorular": "Ders 2 Soru20", "Cevap": myIndexs[1][19]},
        {"Sorular": "Ders 3 Soru1 ", "Cevap": myIndexs[2][0]},
       {"Sorular": "Ders 3 Soru2", "Cevap": myIndexs[2][1]},
       {"Sorular": "Ders 3 Soru3", "Cevap": myIndexs[2][2]},
       {"Sorular": "Ders 3 Soru4 ", "Cevap": myIndexs[2][3]},
       {"Sorular": "Ders 3 Soru5", "Cevap": myIndexs[2][4]},
       {"Sorular": "Ders 3 Soru6 ", "Cevap": myIndexs[2][5]},
       {"Sorular": "Ders 3 Soru7", "Cevap": myIndexs[2][6]},
       {"Sorular": "Ders 3 Soru8", "Cevap": myIndexs[2][7]},
       {"Sorular": "Ders 3 Soru9 ", "Cevap": myIndexs[2][8]},
       {"Sorular": "Ders 3 Soru10", "Cevap": myIndexs[2][9]},
        {"Sorular": "Ders 3 Soru11 ", "Cevap": myIndexs[2][10]},
       {"Sorular": "Ders 3 Soru12", "Cevap": myIndexs[2][11]},
       {"Sorular": "Ders 3 Soru13", "Cevap": myIndexs[2][12]},
       {"Sorular": "Ders 3 Soru14 ", "Cevap": myIndexs[2][13]},
       {"Sorular": "Ders 3 Soru15", "Cevap": myIndexs[2][14]},
       {"Sorular": "Ders 3 Soru16 ", "Cevap": myIndexs[2][15]},
       {"Sorular": "Ders 3 Soru17", "Cevap": myIndexs[2][16]},
       {"Sorular": "Ders 3 Soru18", "Cevap": myIndexs[2][17]},
       {"Sorular": "Ders 3 Soru19 ", "Cevap": myIndexs[2][18]},
       {"Sorular": "Ders 3 Soru20", "Cevap": myIndexs[2][19]}
   ]
)
    
     
            edited_df = st.experimental_data_editor(df,use_container_width=True,height=400)
            
 
      
            if st.button("Kaydet"):
                        repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
                                      DATA_FILE = os.path.join("data", DATA_FILENAME),
                                      HF_TOKEN = "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")
                        repo.git_pull()
                
                        image = Image.open(image_file)
                        image = np.array(image.convert('RGB'))
                #(ans_txt,pathImage, save_images= True)
                        
                        myIndex1_str =",".join(map(str, edited_df["Cevap"]))
                        myIndex2_str =",".join(map(str, myIndexs[1]))
                        myIndex3_str =",".join(map(str, myIndexs[2]))
                        #new_data1 = pd.DataFrame(data, index, columns)
                        data = [[1,answer_code,80,myIndex1_str,90,myIndex2_str,10,myIndex3_str]]
  
# Create the pandas DataFrame
                        new_data = pd.DataFrame(data, columns=['sinav_kodu', 'ogrenci_no',
                                                         "notu1","yanlis_sorulari1",
                                                         "notu2","yanlis_sorulari2",
                                                         "notu3","yanlis_sorulari3"])
                        
                        repo_df = repo_df[repo_df['ogrenci_no'] != answer_code]
                    

                        updated = update(new_data=new_data,ex_df=repo_df)
                #st.dataframe(updated,use_container_width=True)
                        save_and_push(dataFrame=updated,repo=repo,fileName=f"data/{DATA_FILENAME}")
            
                        #st.download_button(label="Tum verileri indirmek icin tiklayin",data=convert_df_to_csv(updated),
                         #      file_name=f'{teacher_code}.csv',mime='text/csv',)      
        else:
            st.write("Giris basarisiz kontrol ediniz.")            
            
#python -m streamlit run app.py
if __name__ == '__main__':
    screen_scan_main()