---
title: Moorcheh.ai
emoji: 🐜
colorFrom: blue
colorTo: purple
sdk: static
sdk_version: "1.0.0"
app_file: app.py
pinned: false
---
# Moorcheh - Information-Theoretical Memory for AI Agents/Apps/Assistants

[](https://www.linkedin.com/company/moorcheh-ai)
[](https://x.com/moorcheh_ai)
[](https://www.youtube.com/@moorchehai)
[](https://www.moorcheh.ai/)
---
## 📊 Download Statistics
**🐍 Python SDK** [](https://pepy.tech/project/moorcheh-sdk) **💬 Chat Boilerplate** [](https://www.npmjs.com/package/moorcheh-chat-boilerplate) **⚡ N8N Nodes** [](https://www.npmjs.com/package/n8n-nodes-moorcheh)
---
## 📚 Repositories
[](https://github.com/moorcheh-ai/moorcheh-python-sdk) [](https://github.com/moorcheh-ai/moorcheh-boilerplate) [](https://github.com/moorcheh-ai/moorcheh-mcp)
---
## 🔌 Integrations
[](https://github.com/moorcheh-ai/moorcheh-langchain-integration) [](https://github.com/moorcheh-ai/n8n-nodes-moorcheh) [](https://github.com/run-llama/llama_index/tree/main/llama-index-integrations/vector_stores/llama-index-vector-stores-moorcheh)
---
## 💡 Use Cases
| | |
| --- | --- |
| **[Analyzing Codebases](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingCodebases_WithFirecrawlAndLlamaIndex)**
Learn how to analyze codebases by integrating Moorcheh with Firecrawl and LlamaIndex. | **[Analyzing Financial Documents](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingFinancialDocuments_WithLangChain)**
Learn how to analyze financial documents by integrating Moorcheh with LangChain. |
| **[Analyzing Geographical Documents](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingGeographicalDocuments_WithLlamaIndex)**
Learn how to analyze geographical documents by integrating Moorcheh with LlamaIndex. | **[Analyzing Healthcare Documents](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingHealthcareDocuments_WithLlamaIndex)**
Learn how to analyze healthcare documents by integrating Moorcheh with LlamaIndex. |
| **[Analyzing Legal Documents](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingLegalDocuments_WithLlamaIndex)**
Learn how to analyze legal documents by integrating Moorcheh with LlamaIndex. | **[Analyzing Moorcheh Website](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingMoorchehWebsite_WithFirecrawl)**
Learn how to analyze the Moorcheh website by integrating Moorcheh with Firecrawl. |
| **[Analyzing Scientific Journals](https://github.com/moorcheh-ai/moorcheh-examples/tree/main/AnalyzingScientificJournals_WithLangChain)**
Learn how to analyze scientific journals by integrating Moorcheh with LangChain. | |
---
## 🚀 Getting Started
[](https://console.moorcheh.ai/api-keys)
[](https://console.moorcheh.ai/namespaces)
[](https://console.moorcheh.ai/playground)
[](https://console.moorcheh.ai/docs)
**📦 Install the SDK:**
```bash
pip install moorcheh-sdk
```
**🚀 Quick Start Example:**
```python
import os
from moorcheh_sdk import MoorchehClient
# Initialize client
client = MoorchehClient(api_key=os.getenv("MOORCHEH_API_KEY"))
# Create namespace and upload documents
client.create_namespace("my-rag", "text")
client.upload_documents("my-rag", [
{"id": "doc1", "text": "Your content...", "metadata": {}}
])
# Get AI-powered answers
answer = client.get_generative_answer(
namespace="my-rag",
query="Your question here"
)
print(answer["answer"])
```
**🛠️ Complete toolkit for Python developers:**
* **Namespace management (text/vector)**
* **Document and vector ingestion**
* **Advanced semantic search with filtering**
* **Built-in RAG system support**
* **Generative AI integration**
* **Comprehensive error handling**
---
## Why Moorcheh.ai?
Moorcheh.ai delivers ultra-fast, highly accurate semantic search powered by cutting-edge information theory principles. Our enterprise platform enables developers to build production-ready RAG systems and AI chatbots with unprecedented search accuracy and performance.
### 🧮 Information-Theoretical Foundation
* **ITS (Information-Theoretical Similarity) Scoring**: Our proprietary algorithm goes beyond traditional cosine similarity, providing more nuanced and contextually aware search results
* **Mathematical Precision**: Built on solid information theory foundations for consistent, explainable results
* **Superior Accuracy**: Outperforms traditional vector databases in semantic understanding and relevance
### 🏢 Enterprise-Ready Features
* **Scalable Architecture**: Handle enterprise workloads with confidence
* **Multi-Modal Support**: Text and vector embeddings in unified namespaces
* **Production Monitoring**: Built-in analytics and performance metrics
---
**Transform your search. Elevate your AI. Choose Moorcheh.ai.**