Update app.py
Browse files
app.py
CHANGED
|
@@ -69,6 +69,7 @@ def plot_flows(y):
|
|
| 69 |
|
| 70 |
def plot_outlines(img, masks):
|
| 71 |
img = normalize99(img)
|
|
|
|
| 72 |
outpix = []
|
| 73 |
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
|
| 74 |
for c in range(len(contours)):
|
|
@@ -118,8 +119,7 @@ def plot_overlay(img, masks):
|
|
| 118 |
img_gray = img.astype(np.float32)
|
| 119 |
|
| 120 |
img = normalize99(img_gray)
|
| 121 |
-
img
|
| 122 |
-
img /= img.max()
|
| 123 |
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
|
| 124 |
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
|
| 125 |
for n in range(int(masks.max())):
|
|
@@ -224,8 +224,8 @@ def cellpose_segment(filepath, resize = 1000,max_iter = 250):
|
|
| 224 |
fname_out = os.path.splitext(filepath[-1])[0]+"_outlines.png"
|
| 225 |
outpix.save(fname_out) #"outlines.png")
|
| 226 |
|
| 227 |
-
fname_flows = os.path.splitext(filepath[-1])[0]+"_flows.png"
|
| 228 |
-
flows.save(fname_flows) #"outlines.png")
|
| 229 |
|
| 230 |
if len(filepath)>1:
|
| 231 |
b1 = gr.DownloadButton(visible=True, value = zip_path)
|
|
@@ -235,15 +235,6 @@ def cellpose_segment(filepath, resize = 1000,max_iter = 250):
|
|
| 235 |
|
| 236 |
return outpix, flows, b1, b2
|
| 237 |
|
| 238 |
-
# Gradio Interface
|
| 239 |
-
#iface = gr.Interface(
|
| 240 |
-
# fn=cellpose_segment,
|
| 241 |
-
# inputs="image",
|
| 242 |
-
# outputs=["image", "image", "image", "image"],
|
| 243 |
-
# title="cellpose segmentation",
|
| 244 |
-
# description="upload an image, then cellpose will segment it at a max size of 400x400 (for full functionality, 'pip install cellpose' locally)"
|
| 245 |
-
#)
|
| 246 |
-
|
| 247 |
def download_function():
|
| 248 |
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
|
| 249 |
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
|
|
|
|
| 69 |
|
| 70 |
def plot_outlines(img, masks):
|
| 71 |
img = normalize99(img)
|
| 72 |
+
img = np.clip(img, 0, 1)
|
| 73 |
outpix = []
|
| 74 |
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
|
| 75 |
for c in range(len(contours)):
|
|
|
|
| 119 |
img_gray = img.astype(np.float32)
|
| 120 |
|
| 121 |
img = normalize99(img_gray)
|
| 122 |
+
#img = np.clip(img, 0, 1)
|
|
|
|
| 123 |
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
|
| 124 |
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
|
| 125 |
for n in range(int(masks.max())):
|
|
|
|
| 224 |
fname_out = os.path.splitext(filepath[-1])[0]+"_outlines.png"
|
| 225 |
outpix.save(fname_out) #"outlines.png")
|
| 226 |
|
| 227 |
+
#fname_flows = os.path.splitext(filepath[-1])[0]+"_flows.png"
|
| 228 |
+
#flows.save(fname_flows) #"outlines.png")
|
| 229 |
|
| 230 |
if len(filepath)>1:
|
| 231 |
b1 = gr.DownloadButton(visible=True, value = zip_path)
|
|
|
|
| 235 |
|
| 236 |
return outpix, flows, b1, b2
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
def download_function():
|
| 239 |
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
|
| 240 |
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
|