--- title: Medgan emoji: ⚡ colorFrom: blue colorTo: gray sdk: static pinned: false license: mit short_description: The project focuses on brain tumor MRI scans and includes im --- <<<<<<< HEAD Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference ======= [![CI](https://github.com/mozaloom/medgan/actions/workflows/main.yml/badge.svg)](https://github.com/mozaloom/medgan/actions/workflows/main.yml) [![Docker Image CI](https://github.com/mozaloom/medgan/actions/workflows/push-docker.yml/badge.svg)](https://github.com/mozaloom/medgan/actions/workflows/push-docker.yml) # MedGAN: Advanced Medical Image Generation medgan Logo ## Overview MedGAN is a comprehensive framework for generating high-quality synthetic medical images using state-of-the-art Generative Adversarial Networks (GANs). The project focuses on brain tumor MRI scans and includes implementations of multiple cutting-edge GAN architectures optimized for medical imaging applications. ## Features - **Multiple GAN Implementations:** - DCGAN (Deep Convolutional GAN) - ProGAN (Progressive Growing of GANs) - StyleGAN2 (Style-based Generator with improvements) - WGAN (Wasserstein GAN with gradient penalty) - **Web Application Interface:** - Generate synthetic brain MRI scans - Detect tumor types from uploaded MRI images - Interactive and user-friendly interface - **Pre-trained Models:** - Models for three tumor types: Glioma, Meningioma, and Pituitary - ViT-based tumor detection model (92% accuracy) ## Architecture Performance Comparison | Architecture | Image Quality | Training Stability | Generation Diversity | Training Speed | |--------------|---------------|--------------------|-----------------------|---------------| | ProGAN | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐ | | StyleGAN2 | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐ | | WGAN-GP | ⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ | | DCGAN | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐ | ⭐⭐⭐⭐⭐ | ## Getting Started ### Prerequisites - Python 3.9+ - PyTorch 1.9+ - Flask (for web application) - CUDA-capable GPU (recommended) ### Installation 1. Clone the repository: ```bash git clone https://github.com/mozaloom/medgan.git cd medgan ``` 2. Install required packages: ```bash pip install -r requirements.txt ``` 3. Run the web application: ```bash python app.py ``` 4. Access the web interface at `http://localhost:5000` ## Usage ### Web Application The MedGAN web application offers two primary functionalities: 1. **Generate synthetic brain MRI scans:** - Select tumor type (Glioma, Meningioma, Pituitary) - Choose GAN architecture - Generate high-quality synthetic MRI images 2. **Detect tumor types:** - Upload brain MRI scans - Receive AI-powered tumor classification - View detection confidence scores Check the individual model implementation files for specific training parameters. ## Project Structure ``` medgan/ ├── app.py # Flask web application ├── medgan/ # Core GAN implementations │ ├── dcgan.py │ ├── progan.py │ ├── stylegan.py │ ├── wgan.py │ └── vit.py ├── models/ # Pre-trained model weights ├── notebooks/ # Training notebooks │ ├── dcgan/ │ ├── progan/ │ ├── stylegan/ │ └── wgan/ ├── static/ # Web assets └── templates/ # HTML templates ``` ## Contributing Contributions are welcome! Please feel free to submit a Pull Request. 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add some amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request ## License This project is licensed under the MIT License - see the LICENSE file for details. ## Acknowledgments - [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data) from Kaggle - Research papers implementing the original GAN architectures: - [DCGAN](https://arxiv.org/abs/1511.06434) - [ProGAN](https://arxiv.org/abs/1710.10196) - [StyleGAN2](https://arxiv.org/abs/1912.04958) - [WGAN](https://arxiv.org/abs/1701.07875) >>>>>>> c38c95c (Initial commit)