Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,12 +5,12 @@ import pandas as pd
|
|
| 5 |
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
|
| 6 |
from sklearn.preprocessing import MinMaxScaler
|
| 7 |
|
| 8 |
-
# Load
|
| 9 |
model = joblib.load("RF.joblib")
|
| 10 |
scaler = joblib.load("norm (1).joblib")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
selected_features =
|
| 14 |
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
|
| 15 |
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
|
| 16 |
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
|
|
@@ -45,69 +45,64 @@ selected_features = [
|
|
| 45 |
"APAAC24"
|
| 46 |
]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
def extract_features(sequence):
|
| 51 |
-
"""Extracts features
|
| 52 |
try:
|
| 53 |
-
# Calculate
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
| 56 |
ctd_features = CTD.CalculateCTD(sequence)
|
| 57 |
-
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence)
|
| 58 |
-
|
| 59 |
-
# Combine all features into a single dictionary
|
| 60 |
-
all_features = {**comp_features, **auto_features, **ctd_features, **pseudo_features}
|
| 61 |
-
#print(len(all_features)) # debugging
|
| 62 |
|
| 63 |
-
|
| 64 |
all_features_df = pd.DataFrame([all_features])
|
| 65 |
-
all_features_df = all_features_df[selected_features]
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
# Normalize the features using the pre-fitted scaler
|
| 69 |
-
normalized_features = scaler.transform(all_features_df)
|
| 70 |
|
|
|
|
|
|
|
| 71 |
return normalized_features
|
| 72 |
|
| 73 |
-
except ZeroDivisionError:
|
| 74 |
-
print("Error
|
| 75 |
-
return None
|
| 76 |
-
except KeyError as e:
|
| 77 |
-
print(f"Error: Missing feature {e}. Check feature name consistency and ProPy version.")
|
| 78 |
-
return None # Or handle appropriately
|
| 79 |
except Exception as e:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
|
| 85 |
def predict(sequence):
|
| 86 |
-
"""Predicts whether the input sequence is an AMP
|
| 87 |
features = extract_features(sequence)
|
| 88 |
-
|
| 89 |
-
# Check if feature extraction was successful
|
| 90 |
if features is None:
|
| 91 |
-
return "Error: Could not extract features.
|
| 92 |
|
| 93 |
-
# No need to reshape here; extract_features already returns the correct shape
|
| 94 |
prediction = model.predict(features)[0]
|
| 95 |
probabilities = model.predict_proba(features)[0]
|
| 96 |
|
| 97 |
-
# Determine output string based on prediction
|
| 98 |
if prediction == 0:
|
| 99 |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
|
| 100 |
else:
|
| 101 |
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
|
| 102 |
|
| 103 |
-
|
| 104 |
-
# Gradio interface setup
|
| 105 |
iface = gr.Interface(
|
| 106 |
fn=predict,
|
| 107 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
| 108 |
outputs=gr.Label(label="Prediction"),
|
| 109 |
title="AMP Classifier",
|
| 110 |
-
description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict
|
| 111 |
)
|
| 112 |
|
| 113 |
iface.launch(share=True)
|
|
|
|
| 5 |
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
|
| 6 |
from sklearn.preprocessing import MinMaxScaler
|
| 7 |
|
| 8 |
+
# Load model and scaler
|
| 9 |
model = joblib.load("RF.joblib")
|
| 10 |
scaler = joblib.load("norm (1).joblib")
|
| 11 |
|
| 12 |
+
# Feature list (KEEP THIS CONSISTENT)
|
| 13 |
+
selected_features = [
|
| 14 |
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
|
| 15 |
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
|
| 16 |
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
|
|
|
|
| 45 |
"APAAC24"
|
| 46 |
]
|
| 47 |
|
|
|
|
|
|
|
| 48 |
def extract_features(sequence):
|
| 49 |
+
"""Extracts features, aligns, and normalizes, prioritizing AADipeptide."""
|
| 50 |
try:
|
| 51 |
+
# 1. Calculate Dipeptide Composition (as per your request)
|
| 52 |
+
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
| 53 |
+
dipeptide_values = list(dipeptide_features.values())
|
| 54 |
+
dipeptide_array = np.array(dipeptide_values).reshape(1, -1) #Correct shape
|
| 55 |
+
|
| 56 |
+
# 2. Calculate other features
|
| 57 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
| 58 |
ctd_features = CTD.CalculateCTD(sequence)
|
| 59 |
+
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence)
|
| 60 |
+
all_features = {**auto_features, **ctd_features, **pseudo_features,**dipeptide_features}
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Create a DataFrame for ALL features
|
| 63 |
all_features_df = pd.DataFrame([all_features])
|
|
|
|
| 64 |
|
| 65 |
+
# --- Feature Selection and Alignment ---
|
| 66 |
+
present_features = [col for col in selected_features if col in all_features_df.columns]
|
| 67 |
+
selected_df = all_features_df[present_features]
|
| 68 |
+
aligned_df = pd.DataFrame(columns=selected_features)
|
| 69 |
+
aligned_df.update(selected_df)
|
| 70 |
+
aligned_df = aligned_df.fillna(0)
|
| 71 |
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
# Normalize
|
| 74 |
+
normalized_features = scaler.transform(aligned_df)
|
| 75 |
return normalized_features
|
| 76 |
|
| 77 |
+
except (ZeroDivisionError, KeyError, TypeError, ValueError) as e:
|
| 78 |
+
print(f"Error during feature extraction: {e}")
|
| 79 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
+
print(f"An unexpected error occurred: {e}")
|
| 82 |
+
return None
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
def predict(sequence):
|
| 86 |
+
"""Predicts whether the input sequence is an AMP."""
|
| 87 |
features = extract_features(sequence)
|
|
|
|
|
|
|
| 88 |
if features is None:
|
| 89 |
+
return "Error: Could not extract features."
|
| 90 |
|
|
|
|
| 91 |
prediction = model.predict(features)[0]
|
| 92 |
probabilities = model.predict_proba(features)[0]
|
| 93 |
|
|
|
|
| 94 |
if prediction == 0:
|
| 95 |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
|
| 96 |
else:
|
| 97 |
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
|
| 98 |
|
| 99 |
+
# Gradio interface
|
|
|
|
| 100 |
iface = gr.Interface(
|
| 101 |
fn=predict,
|
| 102 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
| 103 |
outputs=gr.Label(label="Prediction"),
|
| 104 |
title="AMP Classifier",
|
| 105 |
+
description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
|
| 106 |
)
|
| 107 |
|
| 108 |
iface.launch(share=True)
|