Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
import joblib
|
| 4 |
import numpy as np
|
| 5 |
from propy import AAComposition
|
| 6 |
from sklearn.preprocessing import MinMaxScaler
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
app = FastAPI()
|
| 10 |
-
|
| 11 |
-
# Load trained SVM model and scaler
|
| 12 |
model = joblib.load("SVM.joblib")
|
| 13 |
scaler = MinMaxScaler()
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
def extract_features(sequence: str):
|
| 20 |
-
"""Extract Amino Acid Composition (AAC) features and normalize them."""
|
| 21 |
-
try:
|
| 22 |
-
aac = np.array(list(AAComposition.CalculateAADipeptideComposition(sequence)), dtype=float)
|
| 23 |
-
normalized_features = scaler.fit_transform([aac]) # Don't use fit_transform(), only transform()
|
| 24 |
-
return normalized_features
|
| 25 |
-
except Exception as e:
|
| 26 |
-
raise HTTPException(status_code=400, detail=f"Feature extraction failed: {str(e)}")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
features = extract_features(input_data.sequence)
|
| 32 |
prediction = model.predict(features)[0]
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
| 2 |
import joblib
|
| 3 |
import numpy as np
|
| 4 |
from propy import AAComposition
|
| 5 |
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
|
| 7 |
+
# Load trained SVM model and scaler (Ensure both files exist in the Space)
|
|
|
|
|
|
|
|
|
|
| 8 |
model = joblib.load("SVM.joblib")
|
| 9 |
scaler = MinMaxScaler()
|
| 10 |
|
| 11 |
+
def extract_features(sequence):
|
| 12 |
+
"""Calculate AAC, Dipeptide Composition, and normalize features."""
|
| 13 |
+
# Calculate Amino Acid Composition (AAC) and convert to array
|
| 14 |
+
aac = np.array(list(AAComposition.CalculateAADipeptideComposition(sequence)), dtype=float)
|
| 15 |
+
|
| 16 |
+
# Normalize using the pre-trained scaler (Ensure the scaler is loaded correctly)
|
| 17 |
+
normalized_features = scaler.fit_transform([aac]) # Don't use fit_transform(), only transform()
|
| 18 |
+
|
| 19 |
+
return normalized_features
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
def predict(sequence):
|
| 23 |
+
"""Predict AMP vs Non-AMP"""
|
| 24 |
+
features = extract_features(sequence)
|
|
|
|
| 25 |
prediction = model.predict(features)[0]
|
| 26 |
+
return "AMP" if prediction == 1 else "Non-AMP"
|
| 27 |
+
|
| 28 |
+
# Create Gradio interface
|
| 29 |
+
iface = gr.Interface(
|
| 30 |
+
fn=predict,
|
| 31 |
+
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
| 32 |
+
outputs=gr.Label(label="Prediction"),
|
| 33 |
+
title="AMP Classifier",
|
| 34 |
+
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
| 35 |
+
)
|
| 36 |
|
| 37 |
+
# Launch app
|
| 38 |
+
iface.launch(share=True)
|