Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -46,42 +46,41 @@ selected_features = [
|
|
| 46 |
]
|
| 47 |
|
| 48 |
def extract_features(sequence):
|
|
|
|
| 49 |
if len(sequence) < 3: # Ensure sequence is long enough
|
| 50 |
return None # Return None if sequence is too short
|
| 51 |
|
|
|
|
|
|
|
| 52 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
| 53 |
-
|
| 54 |
-
ctd_features = CTD.CalculateCTD(sequence)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
except ZeroDivisionError:
|
| 59 |
-
pseudo_features = {} # Ignore PseudoAAC features if they fail
|
| 60 |
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
feature_values = np.array(list(all_features.values())).reshape(1, -1) # Reshape for scaler
|
| 66 |
|
| 67 |
-
if feature_values.shape[1] != 145: # Check expected feature count
|
| 68 |
-
print(f"Warning: Extracted {feature_values.shape[1]} features, expected 145. Skipping normalization.")
|
| 69 |
-
return None # Skip this sequence
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
|
|
|
| 73 |
normalized_features = normalized_features.flatten()
|
| 74 |
|
| 75 |
-
selected_feature_dict = {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
selected_feature_df = pd.DataFrame([selected_feature_dict])
|
| 77 |
selected_feature_array = selected_feature_df.T.to_numpy()
|
| 78 |
|
| 79 |
return selected_feature_array
|
| 80 |
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
def predict(sequence):
|
| 86 |
"""Predicts whether the input sequence is an AMP."""
|
| 87 |
features = extract_features(sequence)
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
def extract_features(sequence):
|
| 49 |
+
"""Extract selected features and normalize them."""
|
| 50 |
if len(sequence) < 3: # Ensure sequence is long enough
|
| 51 |
return None # Return None if sequence is too short
|
| 52 |
|
| 53 |
+
all_features_dict = {}
|
| 54 |
+
|
| 55 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
| 56 |
+
all_features_dict.update(dipeptide_features) # Use update instead of reassignment
|
|
|
|
| 57 |
|
| 58 |
+
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
| 59 |
+
all_features_dict.update(auto_features) # Use update
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
ctd_features = CTD.CalculateCTD(sequence)
|
| 62 |
+
all_features_dict.update(ctd_features) # Use update
|
| 63 |
|
| 64 |
+
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence)
|
| 65 |
+
all_features_dict.update(pseudo_features) # Use update
|
|
|
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
feature_values = list(all_features_dict.values()) # Use all_features_dict
|
| 69 |
+
feature_array = np.array(feature_values).reshape(-1, 1)
|
| 70 |
+
normalized_features = scaler.transform(feature_array.T)
|
| 71 |
normalized_features = normalized_features.flatten()
|
| 72 |
|
| 73 |
+
selected_feature_dict = {}
|
| 74 |
+
for i, feature in enumerate(selected_features):
|
| 75 |
+
if feature in all_features_dict: # Use all_features_dict
|
| 76 |
+
selected_feature_dict[feature] = normalized_features[i]
|
| 77 |
+
|
| 78 |
selected_feature_df = pd.DataFrame([selected_feature_dict])
|
| 79 |
selected_feature_array = selected_feature_df.T.to_numpy()
|
| 80 |
|
| 81 |
return selected_feature_array
|
| 82 |
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
def predict(sequence):
|
| 85 |
"""Predicts whether the input sequence is an AMP."""
|
| 86 |
features = extract_features(sequence)
|