Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import joblib
|
| 3 |
-
import joblib
|
| 4 |
import numpy as np
|
| 5 |
-
from pydantic import BaseModel
|
| 6 |
import propy
|
| 7 |
from sklearn.preprocessing import MinMaxScaler
|
| 8 |
|
| 9 |
-
# Load trained SVM model
|
| 10 |
model = joblib.load("SVM.joblib")
|
| 11 |
-
|
| 12 |
-
# Define request model
|
| 13 |
-
class SequenceInput(BaseModel):
|
| 14 |
-
sequence: str
|
| 15 |
|
| 16 |
def extract_features(sequence):
|
| 17 |
-
"""Calculate AAC, Dipeptide Composition and normalize features."""
|
| 18 |
# Calculate Amino Acid Composition (AAC)
|
| 19 |
aac = propy.AAComposition.CalculateAAC(sequence)
|
| 20 |
|
|
@@ -24,18 +19,25 @@ def extract_features(sequence):
|
|
| 24 |
# Combine both features (AAC and Dipeptide Composition)
|
| 25 |
features = np.concatenate((aac, dipeptide_comp))
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
normalized_features = scaler.fit_transform(features.reshape(-1, 1)).flatten()
|
| 30 |
|
| 31 |
return normalized_features
|
| 32 |
|
| 33 |
-
|
| 34 |
-
def predict(sequence_input: SequenceInput):
|
| 35 |
"""Predict AMP vs Non-AMP"""
|
| 36 |
-
sequence = sequence_input.sequence
|
| 37 |
features = extract_features(sequence)
|
| 38 |
-
prediction = model.predict(
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import joblib
|
|
|
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import propy
|
| 5 |
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
|
| 7 |
+
# Load trained SVM model and scaler (Ensure both files exist in the Space)
|
| 8 |
model = joblib.load("SVM.joblib")
|
| 9 |
+
scaler = MinMaxScaler()
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def extract_features(sequence):
|
| 12 |
+
"""Calculate AAC, Dipeptide Composition, and normalize features."""
|
| 13 |
# Calculate Amino Acid Composition (AAC)
|
| 14 |
aac = propy.AAComposition.CalculateAAC(sequence)
|
| 15 |
|
|
|
|
| 19 |
# Combine both features (AAC and Dipeptide Composition)
|
| 20 |
features = np.concatenate((aac, dipeptide_comp))
|
| 21 |
|
| 22 |
+
# Normalize with pre-trained scaler (avoid fitting new data)
|
| 23 |
+
normalized_features = scaler.transform([features])
|
|
|
|
| 24 |
|
| 25 |
return normalized_features
|
| 26 |
|
| 27 |
+
def predict(sequence):
|
|
|
|
| 28 |
"""Predict AMP vs Non-AMP"""
|
|
|
|
| 29 |
features = extract_features(sequence)
|
| 30 |
+
prediction = model.predict(features)[0]
|
| 31 |
+
return "AMP" if prediction == 1 else "Non-AMP"
|
| 32 |
+
|
| 33 |
+
# Create Gradio interface
|
| 34 |
+
iface = gr.Interface(
|
| 35 |
+
fn=predict,
|
| 36 |
+
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
| 37 |
+
outputs=gr.Label(label="Prediction"),
|
| 38 |
+
title="AMP Classifier",
|
| 39 |
+
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
| 40 |
+
)
|
| 41 |
|
| 42 |
+
# Launch app
|
| 43 |
+
iface.launch()
|