Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,27 @@ import numpy as np
|
|
| 4 |
import pandas as pd
|
| 5 |
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
|
| 6 |
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
|
|
|
|
|
|
| 9 |
model = joblib.load("RF.joblib")
|
| 10 |
scaler = joblib.load("norm (4).joblib")
|
| 11 |
|
| 12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
selected_features = [
|
| 14 |
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
|
| 15 |
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
|
|
@@ -45,16 +60,17 @@ selected_features = [
|
|
| 45 |
"APAAC24"
|
| 46 |
]
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
def extract_features(sequence):
|
| 49 |
-
|
| 50 |
all_features_dict = {}
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
# Calculate all dipeptide features
|
| 53 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
| 54 |
-
|
| 55 |
-
# Add only the first 420 features to the dictionary
|
| 56 |
-
first_420_keys = list(dipeptide_features.keys())[:420] # Get the first 420 keys
|
| 57 |
-
filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
|
| 58 |
ctd_features = CTD.CalculateCTD(sequence)
|
| 59 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
| 60 |
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
|
|
@@ -64,65 +80,45 @@ def extract_features(sequence):
|
|
| 64 |
all_features_dict.update(auto_features)
|
| 65 |
all_features_dict.update(pseudo_features)
|
| 66 |
|
| 67 |
-
# Convert all features to DataFrame
|
| 68 |
feature_df_all = pd.DataFrame([all_features_dict])
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
normalized_feature_array = scaler.transform(feature_df_all.values) # Normalize the numpy array
|
| 72 |
-
normalized_feature_df = pd.DataFrame(normalized_feature_array, columns=feature_df_all.columns) # Convert back to DataFrame with original column names
|
| 73 |
-
|
| 74 |
-
# Select features AFTER normalization
|
| 75 |
-
feature_df_selected = normalized_feature_df[selected_features].copy()
|
| 76 |
-
feature_df_selected = feature_df_selected.fillna(0) # Fill missing if any after selection (though unlikely now)
|
| 77 |
-
feature_array = feature_df_selected.values
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
return feature_array
|
| 81 |
-
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
def predict(sequence):
|
| 84 |
-
"""Predicts whether the input sequence is an AMP."""
|
| 85 |
features = extract_features(sequence)
|
| 86 |
-
if isinstance(features, str)
|
| 87 |
return features
|
| 88 |
-
|
| 89 |
prediction = model.predict(features)[0]
|
| 90 |
probabilities = model.predict_proba(features)[0]
|
| 91 |
-
|
| 92 |
if prediction == 0:
|
| 93 |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
|
| 94 |
else:
|
| 95 |
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
def predictmic(sequence):
|
| 99 |
-
import torch
|
| 100 |
-
from transformers import BertTokenizer, BertModel
|
| 101 |
-
import numpy as np
|
| 102 |
-
import joblib # ✅ Use joblib instead of pickle
|
| 103 |
-
from math import expm1
|
| 104 |
-
|
| 105 |
-
# === Load ProtBert model ===
|
| 106 |
-
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
|
| 107 |
-
model = BertModel.from_pretrained("Rostlab/prot_bert")
|
| 108 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 109 |
-
model = model.to(device).eval()
|
| 110 |
-
|
| 111 |
-
# === Preprocess input sequence ===
|
| 112 |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
| 113 |
if len(sequence) < 10:
|
| 114 |
return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}
|
| 115 |
|
| 116 |
-
#
|
| 117 |
seq_spaced = ' '.join(list(sequence))
|
| 118 |
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
|
| 119 |
tokens = {k: v.to(device) for k, v in tokens.items()}
|
| 120 |
|
| 121 |
with torch.no_grad():
|
| 122 |
-
outputs =
|
| 123 |
-
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
|
| 124 |
|
| 125 |
-
#
|
| 126 |
bacteria_config = {
|
| 127 |
"E.coli": {
|
| 128 |
"model": "coli_xgboost_model.pkl",
|
|
@@ -142,59 +138,46 @@ def predictmic(sequence):
|
|
| 142 |
"K.Pneumonia": {
|
| 143 |
"model": "pne_mlp_model.pkl",
|
| 144 |
"scaler": "pne_scaler.pkl",
|
| 145 |
-
"pca": "pne_pca"
|
| 146 |
}
|
| 147 |
}
|
| 148 |
|
| 149 |
mic_results = {}
|
| 150 |
-
|
| 151 |
for bacterium, cfg in bacteria_config.items():
|
| 152 |
try:
|
| 153 |
-
# === Load scaler and transform ===
|
| 154 |
scaler = joblib.load(cfg["scaler"])
|
| 155 |
scaled = scaler.transform(embedding)
|
| 156 |
-
|
| 157 |
-
# === Apply PCA if exists ===
|
| 158 |
-
if cfg["pca"] is not None:
|
| 159 |
pca = joblib.load(cfg["pca"])
|
| 160 |
transformed = pca.transform(scaled)
|
| 161 |
else:
|
| 162 |
transformed = scaled
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
mic_log = mic_model.predict(transformed)[0]
|
| 167 |
-
mic = round(expm1(mic_log), 3) # Inverse of log1p used in training
|
| 168 |
-
|
| 169 |
mic_results[bacterium] = mic
|
| 170 |
-
|
| 171 |
except Exception as e:
|
| 172 |
mic_results[bacterium] = f"Error: {str(e)}"
|
| 173 |
|
| 174 |
return mic_results
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
def full_prediction(sequence):
|
| 181 |
-
# AMP prediction
|
| 182 |
features = extract_features(sequence)
|
| 183 |
-
if isinstance(features, str)
|
| 184 |
-
return "Error", 0
|
| 185 |
-
|
| 186 |
prediction = model.predict(features)[0]
|
| 187 |
probabilities = model.predict_proba(features)[0]
|
| 188 |
-
|
| 189 |
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
|
| 190 |
confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
|
| 191 |
-
|
| 192 |
-
# MIC prediction
|
| 193 |
mic_values = predictmic(sequence)
|
| 194 |
-
|
| 195 |
return amp_result, f"{confidence}%", mic_values
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
iface = gr.Interface(
|
| 199 |
fn=full_prediction,
|
| 200 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
|
@@ -204,7 +187,7 @@ iface = gr.Interface(
|
|
| 204 |
gr.JSON(label="Predicted MIC (µg/mL) for Each Bacterium")
|
| 205 |
],
|
| 206 |
title="AMP & MIC Predictor",
|
| 207 |
-
description="Enter an amino acid sequence (
|
| 208 |
)
|
| 209 |
|
| 210 |
iface.launch(share=True)
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
|
| 6 |
from sklearn.preprocessing import MinMaxScaler
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import BertTokenizer, BertModel
|
| 9 |
+
from math import expm1
|
| 10 |
|
| 11 |
+
# =====================
|
| 12 |
+
# Load AMP Classifier
|
| 13 |
+
# =====================
|
| 14 |
model = joblib.load("RF.joblib")
|
| 15 |
scaler = joblib.load("norm (4).joblib")
|
| 16 |
|
| 17 |
+
# =====================
|
| 18 |
+
# Load ProtBert Globally
|
| 19 |
+
# =====================
|
| 20 |
+
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
|
| 21 |
+
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
protbert_model = protbert_model.to(device).eval()
|
| 24 |
+
|
| 25 |
+
# =====================
|
| 26 |
+
# Feature List (ProPy)
|
| 27 |
+
# =====================
|
| 28 |
selected_features = [
|
| 29 |
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
|
| 30 |
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
|
|
|
|
| 60 |
"APAAC24"
|
| 61 |
]
|
| 62 |
|
| 63 |
+
# =====================
|
| 64 |
+
# AMP Feature Extractor
|
| 65 |
+
# =====================
|
| 66 |
def extract_features(sequence):
|
|
|
|
| 67 |
all_features_dict = {}
|
| 68 |
+
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
| 69 |
+
if len(sequence) < 10:
|
| 70 |
+
return "Error: Sequence too short."
|
| 71 |
|
|
|
|
| 72 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
| 73 |
+
filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
|
|
|
|
|
|
|
|
|
|
| 74 |
ctd_features = CTD.CalculateCTD(sequence)
|
| 75 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
| 76 |
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
|
|
|
|
| 80 |
all_features_dict.update(auto_features)
|
| 81 |
all_features_dict.update(pseudo_features)
|
| 82 |
|
|
|
|
| 83 |
feature_df_all = pd.DataFrame([all_features_dict])
|
| 84 |
+
normalized_array = scaler.transform(feature_df_all.values)
|
| 85 |
+
normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)
|
| 86 |
+
selected_df = normalized_df[selected_features].fillna(0)
|
| 87 |
|
| 88 |
+
return selected_df.values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
# =====================
|
| 91 |
+
# AMP Classifier
|
| 92 |
+
# =====================
|
| 93 |
def predict(sequence):
|
|
|
|
| 94 |
features = extract_features(sequence)
|
| 95 |
+
if isinstance(features, str):
|
| 96 |
return features
|
|
|
|
| 97 |
prediction = model.predict(features)[0]
|
| 98 |
probabilities = model.predict_proba(features)[0]
|
|
|
|
| 99 |
if prediction == 0:
|
| 100 |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
|
| 101 |
else:
|
| 102 |
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
|
| 103 |
|
| 104 |
+
# =====================
|
| 105 |
+
# MIC Predictor (ProtBert-based)
|
| 106 |
+
# =====================
|
| 107 |
def predictmic(sequence):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
| 109 |
if len(sequence) < 10:
|
| 110 |
return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}
|
| 111 |
|
| 112 |
+
# Tokenize
|
| 113 |
seq_spaced = ' '.join(list(sequence))
|
| 114 |
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
|
| 115 |
tokens = {k: v.to(device) for k, v in tokens.items()}
|
| 116 |
|
| 117 |
with torch.no_grad():
|
| 118 |
+
outputs = protbert_model(**tokens)
|
| 119 |
+
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
|
| 120 |
|
| 121 |
+
# MIC model config
|
| 122 |
bacteria_config = {
|
| 123 |
"E.coli": {
|
| 124 |
"model": "coli_xgboost_model.pkl",
|
|
|
|
| 138 |
"K.Pneumonia": {
|
| 139 |
"model": "pne_mlp_model.pkl",
|
| 140 |
"scaler": "pne_scaler.pkl",
|
| 141 |
+
"pca": "pne_pca"
|
| 142 |
}
|
| 143 |
}
|
| 144 |
|
| 145 |
mic_results = {}
|
|
|
|
| 146 |
for bacterium, cfg in bacteria_config.items():
|
| 147 |
try:
|
|
|
|
| 148 |
scaler = joblib.load(cfg["scaler"])
|
| 149 |
scaled = scaler.transform(embedding)
|
| 150 |
+
if cfg["pca"]:
|
|
|
|
|
|
|
| 151 |
pca = joblib.load(cfg["pca"])
|
| 152 |
transformed = pca.transform(scaled)
|
| 153 |
else:
|
| 154 |
transformed = scaled
|
| 155 |
+
model = joblib.load(cfg["model"])
|
| 156 |
+
mic_log = model.predict(transformed)[0]
|
| 157 |
+
mic = round(expm1(mic_log), 3)
|
|
|
|
|
|
|
|
|
|
| 158 |
mic_results[bacterium] = mic
|
|
|
|
| 159 |
except Exception as e:
|
| 160 |
mic_results[bacterium] = f"Error: {str(e)}"
|
| 161 |
|
| 162 |
return mic_results
|
| 163 |
|
| 164 |
+
# =====================
|
| 165 |
+
# Combined Prediction Function
|
| 166 |
+
# =====================
|
|
|
|
| 167 |
def full_prediction(sequence):
|
|
|
|
| 168 |
features = extract_features(sequence)
|
| 169 |
+
if isinstance(features, str):
|
| 170 |
+
return "Error", "0%", {}
|
|
|
|
| 171 |
prediction = model.predict(features)[0]
|
| 172 |
probabilities = model.predict_proba(features)[0]
|
|
|
|
| 173 |
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
|
| 174 |
confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
|
|
|
|
|
|
|
| 175 |
mic_values = predictmic(sequence)
|
|
|
|
| 176 |
return amp_result, f"{confidence}%", mic_values
|
| 177 |
|
| 178 |
+
# =====================
|
| 179 |
+
# Gradio Interface
|
| 180 |
+
# =====================
|
| 181 |
iface = gr.Interface(
|
| 182 |
fn=full_prediction,
|
| 183 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
|
|
|
| 187 |
gr.JSON(label="Predicted MIC (µg/mL) for Each Bacterium")
|
| 188 |
],
|
| 189 |
title="AMP & MIC Predictor",
|
| 190 |
+
description="Enter an amino acid sequence (≥10 valid letters) to predict AMP class and MIC values."
|
| 191 |
)
|
| 192 |
|
| 193 |
iface.launch(share=True)
|