Abhishek Gola
commited on
Commit
·
8a52c41
1
Parent(s):
cf70a14
Added pphumanseg model to space
Browse files- README.md +6 -0
- app.py +67 -0
- pphumanseg.py +69 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -7,6 +7,12 @@ sdk: gradio
|
|
| 7 |
sdk_version: 5.34.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 7 |
sdk_version: 5.34.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
short_description: Human segmentation using OpenCV PaddlePaddle humanseg ONNX model with Gradio UI
|
| 11 |
+
tags:
|
| 12 |
+
- opencv
|
| 13 |
+
- Human segmentation
|
| 14 |
+
- PaddlePaddle
|
| 15 |
+
- Humanseg
|
| 16 |
---
|
| 17 |
|
| 18 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2 as cv
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from pphumanseg import PPHumanSeg
|
| 6 |
+
|
| 7 |
+
# Download ONNX model from Hugging Face
|
| 8 |
+
model_path = hf_hub_download(repo_id="opencv/human_segmentation_pphumanseg", filename="human_segmentation_pphumanseg_2023mar.onnx")
|
| 9 |
+
|
| 10 |
+
# Initialize PPHumanSeg model
|
| 11 |
+
model = PPHumanSeg(
|
| 12 |
+
modelPath=model_path,
|
| 13 |
+
backendId=cv.dnn.DNN_BACKEND_OPENCV,
|
| 14 |
+
targetId=cv.dnn.DNN_TARGET_CPU
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def get_color_map_list(num_classes):
|
| 18 |
+
num_classes += 1
|
| 19 |
+
color_map = num_classes * [0, 0, 0]
|
| 20 |
+
for i in range(num_classes):
|
| 21 |
+
j = 0
|
| 22 |
+
lab = i
|
| 23 |
+
while lab:
|
| 24 |
+
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
|
| 25 |
+
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
|
| 26 |
+
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
|
| 27 |
+
j += 1
|
| 28 |
+
lab >>= 3
|
| 29 |
+
return color_map[3:]
|
| 30 |
+
|
| 31 |
+
def visualize(image, result, weight=0.6):
|
| 32 |
+
color_map = get_color_map_list(256)
|
| 33 |
+
color_map = np.array(color_map).reshape(256, 3).astype(np.uint8)
|
| 34 |
+
|
| 35 |
+
c1 = cv.LUT(result, color_map[:, 0])
|
| 36 |
+
c2 = cv.LUT(result, color_map[:, 1])
|
| 37 |
+
c3 = cv.LUT(result, color_map[:, 2])
|
| 38 |
+
pseudo_img = np.dstack((c1, c2, c3))
|
| 39 |
+
|
| 40 |
+
vis_result = cv.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
|
| 41 |
+
return vis_result
|
| 42 |
+
|
| 43 |
+
def segment_person(input_image):
|
| 44 |
+
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
| 45 |
+
h, w, _ = image.shape
|
| 46 |
+
resized = cv.resize(image, (192, 192))
|
| 47 |
+
resized = cv.cvtColor(resized, cv.COLOR_BGR2RGB)
|
| 48 |
+
|
| 49 |
+
result = model.infer(resized)
|
| 50 |
+
result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
|
| 51 |
+
|
| 52 |
+
output = visualize(image, result)
|
| 53 |
+
output = cv.cvtColor(output, cv.COLOR_BGR2RGB)
|
| 54 |
+
return output
|
| 55 |
+
|
| 56 |
+
# Gradio Interface
|
| 57 |
+
demo = gr.Interface(
|
| 58 |
+
fn=segment_person,
|
| 59 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
| 60 |
+
outputs=gr.Image(type="numpy", label="Human Segmentation Output"),
|
| 61 |
+
title="Human Segmentation PPHumanSeg (OpenCV DNN)",
|
| 62 |
+
allow_flagging="never",
|
| 63 |
+
description="Upload an image to segment human regions using OpenCV's ONNX-based PPHumanSeg model."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
demo.launch()
|
pphumanseg.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is part of OpenCV Zoo project.
|
| 2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
| 3 |
+
#
|
| 4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
| 5 |
+
# Third party copyrights are property of their respective owners.
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import cv2 as cv
|
| 9 |
+
|
| 10 |
+
class PPHumanSeg:
|
| 11 |
+
def __init__(self, modelPath, backendId=0, targetId=0):
|
| 12 |
+
self._modelPath = modelPath
|
| 13 |
+
self._backendId = backendId
|
| 14 |
+
self._targetId = targetId
|
| 15 |
+
|
| 16 |
+
self._model = cv.dnn.readNet(self._modelPath)
|
| 17 |
+
self._model.setPreferableBackend(self._backendId)
|
| 18 |
+
self._model.setPreferableTarget(self._targetId)
|
| 19 |
+
|
| 20 |
+
self._inputNames = ''
|
| 21 |
+
self._outputNames = ['save_infer_model/scale_0.tmp_1']
|
| 22 |
+
self._currentInputSize = None
|
| 23 |
+
self._inputSize = [192, 192]
|
| 24 |
+
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
|
| 25 |
+
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
|
| 26 |
+
|
| 27 |
+
@property
|
| 28 |
+
def name(self):
|
| 29 |
+
return self.__class__.__name__
|
| 30 |
+
|
| 31 |
+
def setBackendAndTarget(self, backendId, targetId):
|
| 32 |
+
self._backendId = backendId
|
| 33 |
+
self._targetId = targetId
|
| 34 |
+
self._model.setPreferableBackend(self._backendId)
|
| 35 |
+
self._model.setPreferableTarget(self._targetId)
|
| 36 |
+
|
| 37 |
+
def _preprocess(self, image):
|
| 38 |
+
|
| 39 |
+
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
| 40 |
+
|
| 41 |
+
self._currentInputSize = image.shape
|
| 42 |
+
image = cv.resize(image, (192, 192))
|
| 43 |
+
|
| 44 |
+
image = image.astype(np.float32, copy=False) / 255.0
|
| 45 |
+
image -= self._mean
|
| 46 |
+
image /= self._std
|
| 47 |
+
return cv.dnn.blobFromImage(image)
|
| 48 |
+
|
| 49 |
+
def infer(self, image):
|
| 50 |
+
|
| 51 |
+
# Preprocess
|
| 52 |
+
inputBlob = self._preprocess(image)
|
| 53 |
+
|
| 54 |
+
# Forward
|
| 55 |
+
self._model.setInput(inputBlob, self._inputNames)
|
| 56 |
+
outputBlob = self._model.forward()
|
| 57 |
+
|
| 58 |
+
# Postprocess
|
| 59 |
+
results = self._postprocess(outputBlob)
|
| 60 |
+
|
| 61 |
+
return results
|
| 62 |
+
|
| 63 |
+
def _postprocess(self, outputBlob):
|
| 64 |
+
|
| 65 |
+
outputBlob = outputBlob[0]
|
| 66 |
+
outputBlob = cv.resize(outputBlob.transpose(1,2,0), (self._currentInputSize[1], self._currentInputSize[0]), interpolation=cv.INTER_LINEAR).transpose(2,0,1)[np.newaxis, ...]
|
| 67 |
+
|
| 68 |
+
result = np.argmax(outputBlob, axis=1).astype(np.uint8)
|
| 69 |
+
return result
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python
|
| 2 |
+
gradio
|
| 3 |
+
numpy
|
| 4 |
+
huggingface_hub
|