Spaces:
Sleeping
Sleeping
pavlyhalim
commited on
Commit
·
dd5d2d2
1
Parent(s):
316f472
Adding model and demo
Browse files- .DS_Store +0 -0
- demo_app.py +526 -0
- model.joblib +3 -0
- requirements.txt +8 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
demo_app.py
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import joblib
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 7 |
+
|
| 8 |
+
class GEMMPredictor:
|
| 9 |
+
def __init__(self, model_path='model.joblib'):
|
| 10 |
+
self.stacked_model = joblib.load(model_path)
|
| 11 |
+
self.initialize_features()
|
| 12 |
+
|
| 13 |
+
def initialize_features(self):
|
| 14 |
+
"""Initialize features used by the model"""
|
| 15 |
+
# Core matrix features
|
| 16 |
+
self.core_features = [
|
| 17 |
+
'm', 'n', 'k',
|
| 18 |
+
'blocksize1', 'blocksize2', 'blocksize3'
|
| 19 |
+
]
|
| 20 |
+
# Derived features
|
| 21 |
+
self.derived_features = [
|
| 22 |
+
'arithmetic_intensity',
|
| 23 |
+
'bytes_accessed',
|
| 24 |
+
'total_flops'
|
| 25 |
+
]
|
| 26 |
+
# Categorical features
|
| 27 |
+
self.categorical_features = ['Layout']
|
| 28 |
+
# Target features
|
| 29 |
+
self.target_features = [
|
| 30 |
+
'runtime',
|
| 31 |
+
'power',
|
| 32 |
+
'Energy',
|
| 33 |
+
'TFlops'
|
| 34 |
+
]
|
| 35 |
+
self.numerical_features = self.core_features + self.derived_features
|
| 36 |
+
|
| 37 |
+
def calculate_gemm_characteristics(self, m, n, k, blocksize1, blocksize2, blocksize3):
|
| 38 |
+
"""Calculate GEMM-specific characteristics"""
|
| 39 |
+
total_flops = 2 * m * n * k # 2 operations per FMA
|
| 40 |
+
bytes_accessed = (m * k + k * n + m * n) * 4 # Single precision
|
| 41 |
+
arithmetic_intensity = total_flops / bytes_accessed
|
| 42 |
+
bound_type = 'compute' if arithmetic_intensity > 59 else 'memory'
|
| 43 |
+
|
| 44 |
+
return {
|
| 45 |
+
'total_flops': total_flops,
|
| 46 |
+
'bytes_accessed': bytes_accessed,
|
| 47 |
+
'arithmetic_intensity': arithmetic_intensity,
|
| 48 |
+
'bound_type': bound_type
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
def get_default_numeric_values(self):
|
| 52 |
+
"""Return default values for missing numeric features"""
|
| 53 |
+
return {
|
| 54 |
+
# Memory-related defaults
|
| 55 |
+
'total_memory': 12288, # 12GB for RTX 4070
|
| 56 |
+
'free_memory': 10240, # Assuming 80% free
|
| 57 |
+
'used_memory': 2048, # Assuming 20% used
|
| 58 |
+
'mem_util': 20.0, # 20% utilization
|
| 59 |
+
'mem_util2': 20.0, # Secondary memory utilization
|
| 60 |
+
|
| 61 |
+
# GPU state defaults
|
| 62 |
+
'temp': 65.0, # Default temperature
|
| 63 |
+
'gpu_util': 80.0, # Default GPU utilization
|
| 64 |
+
'gpu_util1': 80.0, # Secondary GPU utilization
|
| 65 |
+
'clock_sm': 2475, # Default SM clock for RTX 4070
|
| 66 |
+
'power_limit': 200.0, # Default power limit
|
| 67 |
+
'clocks.meme': 2000, # Memory clock speed
|
| 68 |
+
|
| 69 |
+
'alpha': 1.0, # Default scaling factor
|
| 70 |
+
'beta': 0.0, # Default scaling factor
|
| 71 |
+
'problem_size_m': 1024,
|
| 72 |
+
'problem_size_n': 1024,
|
| 73 |
+
'problem_size_k': 1024
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def get_default_categorical_values(self):
|
| 77 |
+
"""Return default values for missing categorical features"""
|
| 78 |
+
return {
|
| 79 |
+
'stage': 'main',
|
| 80 |
+
'kernel_name': 'cutlass_simt_sgemm_128x128_8x2_nn_align1',
|
| 81 |
+
'computation_pattern': 'GEMM',
|
| 82 |
+
'combination_type': 'standard',
|
| 83 |
+
'state': 'active',
|
| 84 |
+
'uses_shared_memory': 'true',
|
| 85 |
+
'gpu_name': 'RTX4070'
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
def prepare_input_data(self, input_dict):
|
| 89 |
+
"""Prepare input data for prediction with default values for missing features"""
|
| 90 |
+
numeric_defaults = self.get_default_numeric_values()
|
| 91 |
+
categorical_defaults = self.get_default_categorical_values()
|
| 92 |
+
|
| 93 |
+
complete_input = {**numeric_defaults, **categorical_defaults}
|
| 94 |
+
|
| 95 |
+
complete_input.update(input_dict)
|
| 96 |
+
|
| 97 |
+
df = pd.DataFrame([complete_input])
|
| 98 |
+
|
| 99 |
+
characteristics = self.calculate_gemm_characteristics(
|
| 100 |
+
df['m'].iloc[0], df['n'].iloc[0], df['k'].iloc[0],
|
| 101 |
+
df['blocksize1'].iloc[0], df['blocksize2'].iloc[0], df['blocksize3'].iloc[0]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
df['total_flops'] = characteristics['total_flops']
|
| 105 |
+
df['bytes_accessed'] = characteristics['bytes_accessed']
|
| 106 |
+
df['arithmetic_intensity'] = characteristics['arithmetic_intensity']
|
| 107 |
+
|
| 108 |
+
for col in self.categorical_features:
|
| 109 |
+
if col in df.columns:
|
| 110 |
+
df[col] = df[col].astype(str)
|
| 111 |
+
|
| 112 |
+
for col in self.numerical_features:
|
| 113 |
+
if col in df.columns:
|
| 114 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
| 115 |
+
|
| 116 |
+
return df
|
| 117 |
+
|
| 118 |
+
def estimate_power(df):
|
| 119 |
+
BASE_POWER = 30
|
| 120 |
+
MAX_POWER = 200
|
| 121 |
+
MAX_TFLOPS = 40
|
| 122 |
+
|
| 123 |
+
df['estimated_power'] = BASE_POWER + (
|
| 124 |
+
(MAX_POWER - BASE_POWER) *
|
| 125 |
+
(df['total_flops'] / (MAX_TFLOPS * 1e12))
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
df['power'] = df['power'].fillna(df['estimated_power'])
|
| 129 |
+
|
| 130 |
+
return df
|
| 131 |
+
|
| 132 |
+
def filter_power_bounds(df):
|
| 133 |
+
MIN_POWER = 25 # Minimum idle power
|
| 134 |
+
MAX_POWER = 200 # Maximum TDP
|
| 135 |
+
|
| 136 |
+
df = df[
|
| 137 |
+
(df['power'].between(MIN_POWER, MAX_POWER)) |
|
| 138 |
+
(df['power'].isna())
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
return df
|
| 142 |
+
|
| 143 |
+
def impute_power(df):
|
| 144 |
+
df['total_elements'] = df['m'] * df['n'] * df['k']
|
| 145 |
+
valid_power = df[df['power'].notna()]
|
| 146 |
+
|
| 147 |
+
features = ['total_elements', 'total_flops', 'arithmetic_intensity']
|
| 148 |
+
X = valid_power[features]
|
| 149 |
+
y = valid_power['power']
|
| 150 |
+
|
| 151 |
+
model = RandomForestRegressor(n_estimators=100)
|
| 152 |
+
model.fit(X, y)
|
| 153 |
+
|
| 154 |
+
missing_power = df[df['power'].isna()]
|
| 155 |
+
imputed_values = model.predict(missing_power[features])
|
| 156 |
+
df.loc[df['power'].isna(), 'power'] = imputed_values
|
| 157 |
+
|
| 158 |
+
return df
|
| 159 |
+
|
| 160 |
+
def preprocess_data(self, df):
|
| 161 |
+
"""Preprocess data focusing on GEMM characteristics with improved power handling"""
|
| 162 |
+
print("\nPreprocessing data...")
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
df_processed = df.copy()
|
| 166 |
+
df_processed = df_processed.replace('[N/A]', np.nan)
|
| 167 |
+
df_processed = df_processed.replace('', np.nan)
|
| 168 |
+
df_processed = self.calculate_gemm_characteristics(df_processed)
|
| 169 |
+
|
| 170 |
+
df_processed['Layout'] = df_processed['Layout'].astype(str)
|
| 171 |
+
|
| 172 |
+
df_processed = self.estimate_power(df_processed)
|
| 173 |
+
df_processed = self.impute_power(df_processed)
|
| 174 |
+
df_processed = self.filter_power_bounds(df_processed)
|
| 175 |
+
|
| 176 |
+
for col in self.numerical_features:
|
| 177 |
+
if col in df_processed.columns:
|
| 178 |
+
df_processed[col] = pd.to_numeric(df_processed[col], errors='coerce')
|
| 179 |
+
Q1 = df_processed[col].quantile(0.01)
|
| 180 |
+
Q3 = df_processed[col].quantile(0.99)
|
| 181 |
+
df_processed[col] = df_processed[col].clip(Q1, Q3)
|
| 182 |
+
df_processed[col] = df_processed[col].fillna(df_processed[col].median())
|
| 183 |
+
|
| 184 |
+
print("Data preprocessing completed successfully")
|
| 185 |
+
print(f"Features summary:")
|
| 186 |
+
print(df_processed[self.numerical_features].describe())
|
| 187 |
+
|
| 188 |
+
return df_processed
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Error in preprocess_data: {str(e)}")
|
| 192 |
+
raise
|
| 193 |
+
|
| 194 |
+
def predict(self, input_data):
|
| 195 |
+
"""Make predictions using the stacked model"""
|
| 196 |
+
df = self.prepare_input_data(input_data)
|
| 197 |
+
predictions = self.stacked_model.predict(df)
|
| 198 |
+
|
| 199 |
+
# Map predictions to target features
|
| 200 |
+
prediction_dict = {target: predictions[0][i] for i, target in enumerate(self.target_features)}
|
| 201 |
+
|
| 202 |
+
prediction_dict['characteristics'] = self.calculate_gemm_characteristics(
|
| 203 |
+
input_data['m'], input_data['n'], input_data['k'],
|
| 204 |
+
input_data['blocksize1'], input_data['blocksize2'], input_data['blocksize3']
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
return prediction_dict
|
| 208 |
+
|
| 209 |
+
def create_comparison_chart(current_metrics, optimal_metrics):
|
| 210 |
+
"""Create a comparison chart using plotly"""
|
| 211 |
+
metrics = ['Runtime (ms)', 'Power (W)', 'Energy (J)', 'TFLOPS']
|
| 212 |
+
current_values = [
|
| 213 |
+
current_metrics['runtime'],
|
| 214 |
+
current_metrics['power'],
|
| 215 |
+
current_metrics['Energy'],
|
| 216 |
+
current_metrics['TFlops']
|
| 217 |
+
]
|
| 218 |
+
optimal_values = [
|
| 219 |
+
optimal_metrics['runtime'],
|
| 220 |
+
optimal_metrics['power'],
|
| 221 |
+
optimal_metrics['Energy'],
|
| 222 |
+
optimal_metrics['TFlops']
|
| 223 |
+
]
|
| 224 |
+
|
| 225 |
+
fig = go.Figure(data=[
|
| 226 |
+
go.Bar(name='Current', x=metrics, y=current_values, marker_color='#ff7c43'),
|
| 227 |
+
go.Bar(name='Optimal', x=metrics, y=optimal_values, marker_color='#00ba38')
|
| 228 |
+
])
|
| 229 |
+
|
| 230 |
+
fig.update_layout(
|
| 231 |
+
barmode='group',
|
| 232 |
+
title='Performance Comparison',
|
| 233 |
+
xaxis_title='Metrics',
|
| 234 |
+
yaxis_title='Values',
|
| 235 |
+
height=400
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
return fig
|
| 239 |
+
|
| 240 |
+
def create_heatmap(m, n, k, block_m, block_n):
|
| 241 |
+
"""Create a heatmap visualization of the matrix blocking"""
|
| 242 |
+
grid_m = int(np.ceil(m / block_m))
|
| 243 |
+
grid_n = int(np.ceil(n / block_n))
|
| 244 |
+
|
| 245 |
+
grid = np.random.uniform(0.5, 1.0, (grid_m, grid_n))
|
| 246 |
+
|
| 247 |
+
fig = go.Figure(data=go.Heatmap(
|
| 248 |
+
z=grid,
|
| 249 |
+
colorscale='Viridis',
|
| 250 |
+
showscale=False
|
| 251 |
+
))
|
| 252 |
+
|
| 253 |
+
fig.update_layout(
|
| 254 |
+
title='Matrix Blocking Visualization',
|
| 255 |
+
xaxis_title='N dimension (columns)',
|
| 256 |
+
yaxis_title='M dimension (rows)',
|
| 257 |
+
height=300,
|
| 258 |
+
margin=dict(l=50, r=50, t=50, b=50)
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
return fig
|
| 262 |
+
|
| 263 |
+
def create_performance_metrics_chart(predictions):
|
| 264 |
+
"""Create a gauge chart for TFLOPS and other metrics"""
|
| 265 |
+
max_tflops = 40 # RTX 4070 theoretical max
|
| 266 |
+
tflops_percentage = (predictions['TFlops'] / max_tflops) * 100
|
| 267 |
+
|
| 268 |
+
fig = go.Figure(go.Indicator(
|
| 269 |
+
mode = "gauge+number",
|
| 270 |
+
value = predictions['TFlops'],
|
| 271 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 272 |
+
title = {'text': "TFLOPS Performance"},
|
| 273 |
+
gauge = {
|
| 274 |
+
'axis': {'range': [None, max_tflops]},
|
| 275 |
+
'bar': {'color': "darkblue"},
|
| 276 |
+
'steps': [
|
| 277 |
+
{'range': [0, max_tflops/3], 'color': "red"},
|
| 278 |
+
{'range': [max_tflops/3, 2*max_tflops/3], 'color': "yellow"},
|
| 279 |
+
{'range': [2*max_tflops/3, max_tflops], 'color': "green"}
|
| 280 |
+
],
|
| 281 |
+
'threshold': {
|
| 282 |
+
'line': {'color': "red", 'width': 4},
|
| 283 |
+
'thickness': 0.75,
|
| 284 |
+
'value': predictions['TFlops']
|
| 285 |
+
}
|
| 286 |
+
}
|
| 287 |
+
))
|
| 288 |
+
|
| 289 |
+
fig.update_layout(height=300)
|
| 290 |
+
return fig
|
| 291 |
+
|
| 292 |
+
def create_efficiency_chart(arithmetic_intensity, mem_bandwidth_utilization, compute_utilization):
|
| 293 |
+
"""Create a spider chart showing various efficiency metrics"""
|
| 294 |
+
fig = go.Figure()
|
| 295 |
+
|
| 296 |
+
categories = ['Arithmetic Intensity', 'Memory BW Utilization', 'Compute Utilization']
|
| 297 |
+
|
| 298 |
+
fig.add_trace(go.Scatterpolar(
|
| 299 |
+
r=[arithmetic_intensity/200*100, mem_bandwidth_utilization, compute_utilization],
|
| 300 |
+
theta=categories,
|
| 301 |
+
fill='toself',
|
| 302 |
+
name='Current Configuration'
|
| 303 |
+
))
|
| 304 |
+
|
| 305 |
+
fig.update_layout(
|
| 306 |
+
polar=dict(
|
| 307 |
+
radialaxis=dict(
|
| 308 |
+
visible=True,
|
| 309 |
+
range=[0, 100]
|
| 310 |
+
)),
|
| 311 |
+
showlegend=False,
|
| 312 |
+
height=300
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
return fig
|
| 316 |
+
|
| 317 |
+
def main():
|
| 318 |
+
st.set_page_config(page_title="GEMM Performance Predictor", layout="wide")
|
| 319 |
+
st.markdown("""
|
| 320 |
+
<style>
|
| 321 |
+
.main {
|
| 322 |
+
padding: 2rem 1rem;
|
| 323 |
+
max-width: 100%;
|
| 324 |
+
}
|
| 325 |
+
.metric-card {
|
| 326 |
+
background-color: #f0f2f6;
|
| 327 |
+
padding: 1rem;
|
| 328 |
+
border-radius: 0.5rem;
|
| 329 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 330 |
+
}
|
| 331 |
+
</style>
|
| 332 |
+
""", unsafe_allow_html=True)
|
| 333 |
+
|
| 334 |
+
st.title("GEMM Performance Predictor for RTX 4070")
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
predictor = GEMMPredictor()
|
| 338 |
+
col1, col2, col3 = st.columns([1,1,1])
|
| 339 |
+
|
| 340 |
+
with col1:
|
| 341 |
+
st.subheader("Matrix Dimensions")
|
| 342 |
+
with st.expander("Set Matrix Dimensions", expanded=True):
|
| 343 |
+
m = st.number_input("M", min_value=1, value=512)
|
| 344 |
+
n = st.number_input("N", min_value=1, value=512)
|
| 345 |
+
k = st.number_input("K", min_value=1, value=1024)
|
| 346 |
+
|
| 347 |
+
with col2:
|
| 348 |
+
st.subheader("Block Sizes")
|
| 349 |
+
with st.expander("Set Block Dimensions", expanded=True):
|
| 350 |
+
blocksize1 = st.number_input("Block Size 1", min_value=1, value=512)
|
| 351 |
+
blocksize2 = st.number_input("Block Size 2", min_value=1, value=128)
|
| 352 |
+
blocksize3 = st.number_input("Block Size 3", min_value=1, value=512)
|
| 353 |
+
|
| 354 |
+
with col3:
|
| 355 |
+
st.subheader("Configuration")
|
| 356 |
+
with st.expander("Additional Settings", expanded=True):
|
| 357 |
+
layout = st.selectbox("Matrix Layout", ['nn', 'nt', 'tn', 'tt'])
|
| 358 |
+
kernel_name = st.selectbox(
|
| 359 |
+
"CUTLASS Kernel",
|
| 360 |
+
[
|
| 361 |
+
'cutlass_simt_sgemm_128x128_8x2_nn_align1',
|
| 362 |
+
'cutlass_simt_sgemm_128x128_8x2_nt_align1',
|
| 363 |
+
'cutlass_simt_sgemm_128x128_8x2_tn_align1',
|
| 364 |
+
'cutlass_simt_sgemm_128x128_8x2_tt_align1'
|
| 365 |
+
]
|
| 366 |
+
)
|
| 367 |
+
alpha = st.number_input("Alpha Scalar", value=1.00, step=0.25)
|
| 368 |
+
beta = st.number_input("Beta Scalar", value=0.50, step=0.25)
|
| 369 |
+
|
| 370 |
+
if st.button("Analyze Performance", use_container_width=True):
|
| 371 |
+
with st.spinner("Analyzing performance..."):
|
| 372 |
+
input_data = {
|
| 373 |
+
'm': m, 'n': n, 'k': k,
|
| 374 |
+
'blocksize1': blocksize1,
|
| 375 |
+
'blocksize2': blocksize2,
|
| 376 |
+
'blocksize3': blocksize3,
|
| 377 |
+
'Layout': layout,
|
| 378 |
+
'kernel_name': kernel_name,
|
| 379 |
+
'alpha': alpha,
|
| 380 |
+
'beta': beta
|
| 381 |
+
}
|
| 382 |
+
predictions = predictor.predict(input_data)
|
| 383 |
+
|
| 384 |
+
tab1, tab2, tab3 = st.tabs(["Performance Metrics", "Detailed Analysis", "Visualizations"])
|
| 385 |
+
|
| 386 |
+
with tab1:
|
| 387 |
+
st.subheader("GEMM Characteristics")
|
| 388 |
+
metric_col1, metric_col2, metric_col3, metric_col4 = st.columns(4)
|
| 389 |
+
|
| 390 |
+
with metric_col1:
|
| 391 |
+
st.metric(
|
| 392 |
+
"Arithmetic Intensity",
|
| 393 |
+
f"{predictions['characteristics']['arithmetic_intensity']:.2f}",
|
| 394 |
+
f"{predictions['characteristics']['bound_type'].upper()} bound"
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
with metric_col2:
|
| 398 |
+
st.metric(
|
| 399 |
+
"Total FLOPS",
|
| 400 |
+
f"{predictions['characteristics']['total_flops']/1e9:.2f}G",
|
| 401 |
+
"Operations"
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
with metric_col3:
|
| 405 |
+
st.metric(
|
| 406 |
+
"Memory Accessed",
|
| 407 |
+
f"{predictions['characteristics']['bytes_accessed']/1e6:.2f}MB",
|
| 408 |
+
"Total Data Movement"
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
with metric_col4:
|
| 412 |
+
memory_efficiency = min(100, predictions['characteristics']['bytes_accessed'] / (504 * 1e9) * 100)
|
| 413 |
+
st.metric(
|
| 414 |
+
"Memory Efficiency",
|
| 415 |
+
f"{memory_efficiency:.1f}%",
|
| 416 |
+
"vs Peak Bandwidth"
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
st.markdown("---")
|
| 420 |
+
|
| 421 |
+
perf_col1, perf_col2, perf_col3, perf_col4 = st.columns(4)
|
| 422 |
+
|
| 423 |
+
with perf_col1:
|
| 424 |
+
st.metric(
|
| 425 |
+
"Runtime",
|
| 426 |
+
f"{max(0.01, predictions['runtime']):.2f} ms",
|
| 427 |
+
"Execution Time"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
with perf_col2:
|
| 431 |
+
st.metric(
|
| 432 |
+
"Power",
|
| 433 |
+
f"{max(1.0, predictions['power']):.2f} W",
|
| 434 |
+
"Power Consumption"
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
with perf_col3:
|
| 438 |
+
st.metric(
|
| 439 |
+
"Energy",
|
| 440 |
+
f"{max(0.01, predictions['Energy']):.2f} J",
|
| 441 |
+
"Total Energy"
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
with perf_col4:
|
| 445 |
+
efficiency = (predictions['TFlops'] / 40) * 100
|
| 446 |
+
st.metric(
|
| 447 |
+
"TFLOPS",
|
| 448 |
+
f"{predictions['TFlops']:.2f}",
|
| 449 |
+
f"{efficiency:.1f}% of Peak"
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
with tab2:
|
| 453 |
+
st.subheader("Detailed Performance Analysis")
|
| 454 |
+
|
| 455 |
+
col1, col2 = st.columns(2)
|
| 456 |
+
|
| 457 |
+
with col1:
|
| 458 |
+
st.markdown("#### Matrix Configuration")
|
| 459 |
+
st.markdown(f"""
|
| 460 |
+
- Total Matrix Elements: {m*n:,}
|
| 461 |
+
- Memory Footprint: {predictions['characteristics']['bytes_accessed']/1e6:.2f} MB
|
| 462 |
+
- Block Dimensions: {blocksize1}x{blocksize2}x{blocksize3}
|
| 463 |
+
- Grid Size: {m//blocksize1}x{n//blocksize2} blocks
|
| 464 |
+
""")
|
| 465 |
+
|
| 466 |
+
with col2:
|
| 467 |
+
st.markdown("#### Performance Bottlenecks")
|
| 468 |
+
ai = predictions['characteristics']['arithmetic_intensity']
|
| 469 |
+
if ai > 59:
|
| 470 |
+
st.success("✅ Compute Bound - Optimal for GPU")
|
| 471 |
+
else:
|
| 472 |
+
st.warning("⚠️ Memory Bound - Consider Optimization")
|
| 473 |
+
|
| 474 |
+
efficiency = (predictions['TFlops'] / 40) * 100
|
| 475 |
+
if efficiency < 30:
|
| 476 |
+
st.error("🔴 Low Compute Efficiency - Check Configuration")
|
| 477 |
+
elif efficiency < 60:
|
| 478 |
+
st.warning("🟡 Moderate Efficiency - Room for Improvement")
|
| 479 |
+
else:
|
| 480 |
+
st.success("🟢 Good Efficiency")
|
| 481 |
+
|
| 482 |
+
with tab3:
|
| 483 |
+
st.subheader("Performance Visualizations")
|
| 484 |
+
|
| 485 |
+
viz_col1, viz_col2 = st.columns(2)
|
| 486 |
+
|
| 487 |
+
with viz_col1:
|
| 488 |
+
st.plotly_chart(create_performance_metrics_chart(predictions), use_container_width=True)
|
| 489 |
+
|
| 490 |
+
with viz_col2:
|
| 491 |
+
mem_bw_util = min(100, predictions['characteristics']['bytes_accessed'] / (504 * 1e9) * 100)
|
| 492 |
+
compute_util = min(100, (predictions['TFlops'] / 40) * 100)
|
| 493 |
+
st.plotly_chart(
|
| 494 |
+
create_efficiency_chart(
|
| 495 |
+
predictions['characteristics']['arithmetic_intensity'],
|
| 496 |
+
mem_bw_util,
|
| 497 |
+
compute_util
|
| 498 |
+
),
|
| 499 |
+
use_container_width=True
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
st.plotly_chart(create_heatmap(m, n, k, blocksize1, blocksize2), use_container_width=True)
|
| 503 |
+
|
| 504 |
+
st.markdown("### Recommendations")
|
| 505 |
+
|
| 506 |
+
recommendations = []
|
| 507 |
+
if blocksize1 * blocksize2 > 1024:
|
| 508 |
+
recommendations.append("⚠️ Block size might be too large for optimal occupancy")
|
| 509 |
+
if predictions['characteristics']['arithmetic_intensity'] < 30:
|
| 510 |
+
recommendations.append("Consider increasing arithmetic intensity through blocking")
|
| 511 |
+
if efficiency < 50:
|
| 512 |
+
recommendations.append("Performance is below 50% of peak - try different block sizes")
|
| 513 |
+
|
| 514 |
+
if recommendations:
|
| 515 |
+
for rec in recommendations:
|
| 516 |
+
st.markdown(f"- {rec}")
|
| 517 |
+
else:
|
| 518 |
+
st.success("Current configuration appears optimal!")
|
| 519 |
+
|
| 520 |
+
except Exception as e:
|
| 521 |
+
st.error(f"An error occurred: {str(e)}")
|
| 522 |
+
st.write("Please make sure the model file 'rtx4070_performance_models.joblib' is in the correct directory.")
|
| 523 |
+
st.write("If the error persists, check the input parameters and model compatibility.")
|
| 524 |
+
|
| 525 |
+
if __name__ == "__main__":
|
| 526 |
+
main()
|
model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0515756fcee4d66c50911757d1956682e7ea023f1f8bd92a15dbdbc49835f08a
|
| 3 |
+
size 2759586
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
numpy
|
| 3 |
+
scikit-learn
|
| 4 |
+
matplotlib
|
| 5 |
+
seaborn
|
| 6 |
+
joblib
|
| 7 |
+
streamlit
|
| 8 |
+
plotly
|