Spaces:
Sleeping
Sleeping
File size: 1,740 Bytes
dd2c9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
title: Attention Atlas
emoji: π
colorFrom: pink
colorTo: blue
sdk: docker
pinned: false
license: mit
short_description: Tool for exploring attention patterns, assessing bias, etc.
app_port: 8000
---
# Attention Atlas π
An interactive application for visualizing and exploring **Transformer architectures** (BERT, GPT-2) in detail, with special focus on **multi-head attention patterns**, **head specializations**, **bias detection**, and **inter-sentence attention analysis**.
## Overview
Attention Atlas is an educational and analytical tool that allows you to visually explore every component of BERT and GPT-2 architectures:
- **Token Embeddings & Positional Encodings**
- **Q/K/V Projections** & **Scaled Dot-Product Attention**
- **Multi-Head Attention** (Interactive Maps & Flow)
- **Head Specialization Radar** (Syntax, Semantics, etc.)
- **Bias Detection** (Token-level & Attention interaction)
- **Token Influence Tree** (Hierarchical dependencies)
- **Inter-Sentence Attention (ISA)**
## Features
- **Interactive Visualizations**: Powered by Plotly and D3.js.
- **Real-Time Inference**: Uses PyTorch backend to run BERT/GPT-2 models on the fly.
- **Bias Analysis**: Detects generalizations, stereotypes, and unfair language, analyzing how attention mechanisms process them.
- **Full Architecture Explorer**: Inspect every layer, head, and residual connection.
## Technologies
- **Shiny for Python**
- **Transformers (Hugging Face)**
- **PyTorch**
- **Plotly**
## Usage
Simply enter a sentence in the input box, select a model (BERT or GPT-2), and click **Generate** / **Analyze Bias**.
---
*Part of a Master's thesis on Interpretable Large Language Models.*
|