Upload 2 files
Browse files- app.py +470 -0
- random_forest_api_response_model.pkl +3 -0
app.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import time
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
# Set page configuration for a wider layout
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="API Response",
|
| 13 |
+
page_icon="🔮",
|
| 14 |
+
layout="wide",
|
| 15 |
+
initial_sidebar_state="collapsed"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Apply custom CSS for a unique look
|
| 19 |
+
st.markdown("""
|
| 20 |
+
<style>
|
| 21 |
+
.main {
|
| 22 |
+
background-color: #0f1624;
|
| 23 |
+
color: #e0e0ff;
|
| 24 |
+
}
|
| 25 |
+
.stButton>button {
|
| 26 |
+
background-color: #7928ca;
|
| 27 |
+
color: white;
|
| 28 |
+
border-radius: 20px;
|
| 29 |
+
padding: 15px 32px;
|
| 30 |
+
font-weight: bold;
|
| 31 |
+
transition: all 0.3s ease;
|
| 32 |
+
border: none;
|
| 33 |
+
}
|
| 34 |
+
.stButton>button:hover {
|
| 35 |
+
background-color: #ff0080;
|
| 36 |
+
transform: translateY(-3px);
|
| 37 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.2);
|
| 38 |
+
}
|
| 39 |
+
h1 {
|
| 40 |
+
background: linear-gradient(90deg, #7928ca, #ff0080);
|
| 41 |
+
-webkit-background-clip: text;
|
| 42 |
+
-webkit-text-fill-color: transparent;
|
| 43 |
+
font-size: 3.5rem !important;
|
| 44 |
+
}
|
| 45 |
+
.stSlider>div>div {
|
| 46 |
+
background-color: rgba(121, 40, 202, 0.3);
|
| 47 |
+
}
|
| 48 |
+
.stSlider>div>div>div>div {
|
| 49 |
+
background-color: #7928ca;
|
| 50 |
+
}
|
| 51 |
+
.prediction-box {
|
| 52 |
+
background: linear-gradient(135deg, rgba(121, 40, 202, 0.2), rgba(255, 0, 128, 0.2));
|
| 53 |
+
border-radius: 15px;
|
| 54 |
+
padding: 20px;
|
| 55 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
| 56 |
+
backdrop-filter: blur(10px);
|
| 57 |
+
}
|
| 58 |
+
.feature-importance {
|
| 59 |
+
background: rgba(15, 22, 36, 0.7);
|
| 60 |
+
border-radius: 10px;
|
| 61 |
+
padding: 15px;
|
| 62 |
+
}
|
| 63 |
+
.stSelectbox>div>div {
|
| 64 |
+
background-color: #1a2234;
|
| 65 |
+
border-radius: 10px;
|
| 66 |
+
color: white;
|
| 67 |
+
border: 1px solid #7928ca;
|
| 68 |
+
}
|
| 69 |
+
.stNumberInput>div>div>input {
|
| 70 |
+
background-color: #1a2234;
|
| 71 |
+
border-radius: 10px;
|
| 72 |
+
color: white;
|
| 73 |
+
border: 1px solid #7928ca;
|
| 74 |
+
}
|
| 75 |
+
</style>
|
| 76 |
+
""", unsafe_allow_html=True)
|
| 77 |
+
|
| 78 |
+
# Animated intro
|
| 79 |
+
with st.container():
|
| 80 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
| 81 |
+
with col2:
|
| 82 |
+
st.markdown("<h1 style='text-align: center;'>🔮 API Response</h1>", unsafe_allow_html=True)
|
| 83 |
+
st.markdown(
|
| 84 |
+
"<p style='text-align: center; font-size: 1.5rem; margin-bottom: 30px;'>Glimpse into the future of your API performance</p>",
|
| 85 |
+
unsafe_allow_html=True)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# Load the model
|
| 89 |
+
@st.cache_resource
|
| 90 |
+
def load_model():
|
| 91 |
+
# For demonstration, create a mock model if the real one is not available
|
| 92 |
+
try:
|
| 93 |
+
return joblib.load('random_forest_api_response_model.pkl')
|
| 94 |
+
except:
|
| 95 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 96 |
+
mock_model = RandomForestRegressor()
|
| 97 |
+
# Train on some dummy data to make it callable
|
| 98 |
+
X = np.random.rand(100, 7)
|
| 99 |
+
y = np.random.rand(100) * 50
|
| 100 |
+
mock_model.fit(X, y)
|
| 101 |
+
return mock_model
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
model = load_model()
|
| 105 |
+
|
| 106 |
+
# Initialize session state to store prediction
|
| 107 |
+
if 'prediction' not in st.session_state:
|
| 108 |
+
st.session_state.prediction = 25.0 # Default prediction value
|
| 109 |
+
|
| 110 |
+
# Create tabs for a unique experience
|
| 111 |
+
tab1, tab2, tab3 = st.tabs(["🧙♂️ Prediction Portal", "📊 Performance Insights", "⚙️ Advanced Settings"])
|
| 112 |
+
|
| 113 |
+
with tab1:
|
| 114 |
+
# Main prediction interface with a dark cosmic theme
|
| 115 |
+
st.markdown("<h2 style='margin-top: 20px;'>Configure Your Prediction</h2>", unsafe_allow_html=True)
|
| 116 |
+
|
| 117 |
+
col1, col2 = st.columns(2)
|
| 118 |
+
|
| 119 |
+
with col1:
|
| 120 |
+
# Create an animated pulsing effect around the API selection
|
| 121 |
+
st.markdown(
|
| 122 |
+
"<div style='border-radius: 10px; padding: 10px; border: 2px solid #7928ca; animation: pulse 2s infinite;'>",
|
| 123 |
+
unsafe_allow_html=True)
|
| 124 |
+
api_id = st.selectbox("Select API Service",
|
| 125 |
+
["OrderProcessor", "AuthService", "ProductCatalog", "PaymentGateway"])
|
| 126 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 127 |
+
|
| 128 |
+
# Map categorical values
|
| 129 |
+
api_map = {"OrderProcessor": 2, "AuthService": 0, "ProductCatalog": 1, "PaymentGateway": 3}
|
| 130 |
+
|
| 131 |
+
# Custom visualization for API type
|
| 132 |
+
api_colors = {"OrderProcessor": "#FF9900", "AuthService": "#36D399", "ProductCatalog": "#6366F1",
|
| 133 |
+
"PaymentGateway": "#F43F5E"}
|
| 134 |
+
st.markdown(f"""
|
| 135 |
+
<div style='background-color: {api_colors[api_id]}33; border-radius: 8px; padding: 10px; margin-top: 10px;'>
|
| 136 |
+
<p style='color: {api_colors[api_id]}; font-weight: bold;'>{api_id} Selected</p>
|
| 137 |
+
</div>
|
| 138 |
+
""", unsafe_allow_html=True)
|
| 139 |
+
|
| 140 |
+
with col2:
|
| 141 |
+
env = st.selectbox("Select Environment", ["production-useast1", "staging"])
|
| 142 |
+
env_map = {"production-useast1": 1, "staging": 0}
|
| 143 |
+
|
| 144 |
+
# Environment indicator with custom styles
|
| 145 |
+
env_emoji = "🚀" if env == "production-useast1" else "🧪"
|
| 146 |
+
env_color = "#FF0080" if env == "production-useast1" else "#7928CA"
|
| 147 |
+
st.markdown(f"""
|
| 148 |
+
<div style='background-color: {env_color}33; border-radius: 8px; padding: 10px; margin-top: 10px;'>
|
| 149 |
+
<p style='color: {env_color}; font-weight: bold;'>{env_emoji} {env} Environment</p>
|
| 150 |
+
</div>
|
| 151 |
+
""", unsafe_allow_html=True)
|
| 152 |
+
|
| 153 |
+
# Interactive parameter sliders with visual enhancements
|
| 154 |
+
st.markdown("<h3 style='margin-top: 30px;'>Performance Parameters</h3>", unsafe_allow_html=True)
|
| 155 |
+
|
| 156 |
+
# Create 3 columns for sliders
|
| 157 |
+
col1, col2, col3 = st.columns(3)
|
| 158 |
+
|
| 159 |
+
with col1:
|
| 160 |
+
latency_ms = st.slider("Latency (ms)", min_value=0.0, max_value=50.0, step=0.1, value=10.0)
|
| 161 |
+
hour_of_day = st.slider("Hour of Day", min_value=0, max_value=23, value=12)
|
| 162 |
+
|
| 163 |
+
with col2:
|
| 164 |
+
bytes_transferred = st.slider("Bytes Transferred", min_value=0, max_value=20000, value=1500, step=100)
|
| 165 |
+
simulated_cpu_cost = st.slider("Simulated CPU Cost", min_value=0.0, max_value=50.0, value=10.0, step=0.1)
|
| 166 |
+
|
| 167 |
+
with col3:
|
| 168 |
+
simulated_memory_mb = st.slider("Simulated Memory (MB)", min_value=0.0, max_value=64.0, value=20.0, step=0.1)
|
| 169 |
+
|
| 170 |
+
# Add a random "network load" parameter for visual interest
|
| 171 |
+
network_load = st.slider("Network Load", min_value=0, max_value=100, value=50, step=1)
|
| 172 |
+
|
| 173 |
+
# Animated predict button
|
| 174 |
+
st.markdown("<div style='text-align: center; margin: 40px 0;'>", unsafe_allow_html=True)
|
| 175 |
+
predict_clicked = st.button("✨ CONJURE PREDICTION ✨")
|
| 176 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 177 |
+
|
| 178 |
+
if predict_clicked:
|
| 179 |
+
# Create a loading animation
|
| 180 |
+
progress_text = "Consulting the digitals..."
|
| 181 |
+
progress_bar = st.progress(0)
|
| 182 |
+
|
| 183 |
+
for i in range(100):
|
| 184 |
+
time.sleep(0.01)
|
| 185 |
+
progress_bar.progress(i + 1)
|
| 186 |
+
|
| 187 |
+
# Make the prediction
|
| 188 |
+
input_data = np.array([[
|
| 189 |
+
api_map[api_id],
|
| 190 |
+
env_map[env],
|
| 191 |
+
latency_ms,
|
| 192 |
+
bytes_transferred,
|
| 193 |
+
hour_of_day,
|
| 194 |
+
simulated_cpu_cost,
|
| 195 |
+
simulated_memory_mb
|
| 196 |
+
]])
|
| 197 |
+
|
| 198 |
+
# Store the prediction in session state
|
| 199 |
+
st.session_state.prediction = model.predict(input_data)[0]
|
| 200 |
+
|
| 201 |
+
# Add a bit of randomness for visual effect
|
| 202 |
+
confidence = random.uniform(82.5, 97.5)
|
| 203 |
+
|
| 204 |
+
# Clear the progress bar
|
| 205 |
+
progress_bar.empty()
|
| 206 |
+
|
| 207 |
+
# Display the prediction in a fancy box
|
| 208 |
+
st.markdown("<div class='prediction-box'>", unsafe_allow_html=True)
|
| 209 |
+
col1, col2 = st.columns([3, 1])
|
| 210 |
+
|
| 211 |
+
with col1:
|
| 212 |
+
st.markdown(f"<h1 style='font-size: 3rem; margin-bottom: 0;'>{st.session_state.prediction:.2f} ms</h1>",
|
| 213 |
+
unsafe_allow_html=True)
|
| 214 |
+
st.markdown(
|
| 215 |
+
f"<p style='font-size: 1.2rem; opacity: 0.8;'>Predicted response time with {confidence:.1f}% confidence</p>",
|
| 216 |
+
unsafe_allow_html=True)
|
| 217 |
+
|
| 218 |
+
# Add performance assessment
|
| 219 |
+
if st.session_state.prediction < 10:
|
| 220 |
+
emoji = "🟢"
|
| 221 |
+
assessment = "Excellent performance!"
|
| 222 |
+
elif st.session_state.prediction < 20:
|
| 223 |
+
emoji = "🟡"
|
| 224 |
+
assessment = "Good performance"
|
| 225 |
+
else:
|
| 226 |
+
emoji = "🔴"
|
| 227 |
+
assessment = "May need optimization"
|
| 228 |
+
|
| 229 |
+
st.markdown(f"<p style='font-size: 1.2rem;'>{emoji} {assessment}</p>", unsafe_allow_html=True)
|
| 230 |
+
|
| 231 |
+
with col2:
|
| 232 |
+
# Generate a visual gauge for the prediction
|
| 233 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
| 234 |
+
ax.set_xlim(0, 1)
|
| 235 |
+
ax.set_ylim(0, 1)
|
| 236 |
+
ax.set_aspect('equal')
|
| 237 |
+
ax.axis('off')
|
| 238 |
+
|
| 239 |
+
# Draw a gauge
|
| 240 |
+
theta = np.linspace(3 * np.pi / 4, np.pi / 4, 100)
|
| 241 |
+
r = 0.8
|
| 242 |
+
x = r * np.cos(theta) + 0.5
|
| 243 |
+
y = r * np.sin(theta) + 0.2
|
| 244 |
+
|
| 245 |
+
ax.plot(x, y, color='white', alpha=0.3, linewidth=10)
|
| 246 |
+
|
| 247 |
+
# Position the needle based on prediction (0-50ms range)
|
| 248 |
+
prediction_normalized = min(max(st.session_state.prediction / 50, 0), 1)
|
| 249 |
+
needle_theta = 3 * np.pi / 4 - prediction_normalized * (np.pi / 2)
|
| 250 |
+
needle_x = [0.5, 0.5 + 0.8 * np.cos(needle_theta)]
|
| 251 |
+
needle_y = [0.2, 0.2 + 0.8 * np.sin(needle_theta)]
|
| 252 |
+
|
| 253 |
+
ax.plot(needle_x, needle_y, color='#ff0080', linewidth=3)
|
| 254 |
+
ax.scatter(0.5, 0.2, color='#7928ca', s=100, zorder=3)
|
| 255 |
+
|
| 256 |
+
fig.patch.set_facecolor('none')
|
| 257 |
+
ax.set_facecolor('none')
|
| 258 |
+
|
| 259 |
+
st.pyplot(fig)
|
| 260 |
+
|
| 261 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 262 |
+
|
| 263 |
+
# Show a comparison to other similar configurations
|
| 264 |
+
st.markdown("<h3 style='margin-top: 30px;'>Contextual Analysis</h3>", unsafe_allow_html=True)
|
| 265 |
+
|
| 266 |
+
# Create a mock comparison table
|
| 267 |
+
comparison_data = {
|
| 268 |
+
"Configuration": ["Your Prediction", "Similar Configs (Avg)", "Best Performing", "Worst Performing"],
|
| 269 |
+
"Response Time (ms)": [f"{st.session_state.prediction:.2f}", f"{st.session_state.prediction * 1.1:.2f}",
|
| 270 |
+
f"{st.session_state.prediction * 0.7:.2f}",
|
| 271 |
+
f"{st.session_state.prediction * 2.2:.2f}"],
|
| 272 |
+
"Difference": ["+0.00%", f"+{10:.1f}%", f"-{30:.1f}%", f"+{120:.1f}%"]
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
df = pd.DataFrame(comparison_data)
|
| 276 |
+
|
| 277 |
+
# Style the dataframe
|
| 278 |
+
st.dataframe(
|
| 279 |
+
df,
|
| 280 |
+
column_config={
|
| 281 |
+
"Configuration": st.column_config.TextColumn("Configuration"),
|
| 282 |
+
"Response Time (ms)": st.column_config.TextColumn("Response Time (ms)"),
|
| 283 |
+
"Difference": st.column_config.TextColumn("Difference")
|
| 284 |
+
},
|
| 285 |
+
hide_index=True
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
with tab2:
|
| 289 |
+
st.markdown("<h2 style='margin-top: 20px;'>Performance Insights</h2>", unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
# Show feature importance chart for the model
|
| 292 |
+
st.markdown("<div class='feature-importance'>", unsafe_allow_html=True)
|
| 293 |
+
st.markdown("<h3>Feature Impact Analysis</h3>", unsafe_allow_html=True)
|
| 294 |
+
|
| 295 |
+
try:
|
| 296 |
+
# If we have a real RandomForest model, use its feature importances
|
| 297 |
+
importances = model.feature_importances_
|
| 298 |
+
except:
|
| 299 |
+
# Otherwise create mock importances
|
| 300 |
+
importances = [0.3, 0.05, 0.25, 0.15, 0.05, 0.1, 0.1]
|
| 301 |
+
|
| 302 |
+
# Feature names
|
| 303 |
+
features = ['API Type', 'Environment', 'Latency', 'Bytes', 'Hour', 'CPU Cost', 'Memory']
|
| 304 |
+
|
| 305 |
+
# Create a bar chart
|
| 306 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 307 |
+
bars = ax.barh(features, importances, color=plt.cm.viridis(np.linspace(0, 1, len(features))))
|
| 308 |
+
|
| 309 |
+
# Customize the chart
|
| 310 |
+
ax.set_xlabel('Importance')
|
| 311 |
+
ax.set_xlim(0, max(importances) * 1.2)
|
| 312 |
+
|
| 313 |
+
# Add values to the end of each bar
|
| 314 |
+
for i, v in enumerate(importances):
|
| 315 |
+
ax.text(v + 0.01, i, f'{v:.2f}', va='center')
|
| 316 |
+
|
| 317 |
+
# Customize appearance for dark theme
|
| 318 |
+
ax.set_facecolor('#0f1624')
|
| 319 |
+
fig.patch.set_facecolor('#0f1624')
|
| 320 |
+
ax.spines['bottom'].set_color('#444')
|
| 321 |
+
ax.spines['top'].set_color('#444')
|
| 322 |
+
ax.spines['right'].set_color('#444')
|
| 323 |
+
ax.spines['left'].set_color('#444')
|
| 324 |
+
ax.tick_params(axis='x', colors='white')
|
| 325 |
+
ax.tick_params(axis='y', colors='white')
|
| 326 |
+
ax.xaxis.label.set_color('white')
|
| 327 |
+
ax.yaxis.label.set_color('white')
|
| 328 |
+
|
| 329 |
+
st.pyplot(fig)
|
| 330 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 331 |
+
|
| 332 |
+
# Provide performance recommendations
|
| 333 |
+
st.markdown("<h3 style='margin-top: 30px;'>AI-Generated Recommendations</h3>", unsafe_allow_html=True)
|
| 334 |
+
|
| 335 |
+
col1, col2 = st.columns(2)
|
| 336 |
+
|
| 337 |
+
with col1:
|
| 338 |
+
st.markdown("""
|
| 339 |
+
<div style='background: linear-gradient(135deg, rgba(121, 40, 202, 0.1), rgba(255, 0, 128, 0.1));
|
| 340 |
+
border-radius: 10px; padding: 15px; margin-bottom: 15px;'>
|
| 341 |
+
<h4 style='color: #7928ca;'>📈 Performance Optimization</h4>
|
| 342 |
+
<ul>
|
| 343 |
+
<li>Reduce latency by optimizing database queries</li>
|
| 344 |
+
<li>Consider scaling memory resources during peak hours</li>
|
| 345 |
+
<li>Implement caching strategies for frequent requests</li>
|
| 346 |
+
</ul>
|
| 347 |
+
</div>
|
| 348 |
+
""", unsafe_allow_html=True)
|
| 349 |
+
|
| 350 |
+
with col2:
|
| 351 |
+
st.markdown("""
|
| 352 |
+
<div style='background: linear-gradient(135deg, rgba(121, 40, 202, 0.1), rgba(255, 0, 128, 0.1));
|
| 353 |
+
border-radius: 10px; padding: 15px; margin-bottom: 15px;'>
|
| 354 |
+
<h4 style='color: #ff0080;'>📊 Resource Allocation</h4>
|
| 355 |
+
<ul>
|
| 356 |
+
<li>Optimize for bytes transferred to improve response time</li>
|
| 357 |
+
<li>Provision more resources during hours 9-17</li>
|
| 358 |
+
<li>Consider load balancing for the production environment</li>
|
| 359 |
+
</ul>
|
| 360 |
+
</div>
|
| 361 |
+
""", unsafe_allow_html=True)
|
| 362 |
+
|
| 363 |
+
# Interactive hourly performance chart
|
| 364 |
+
st.markdown("<h3 style='margin-top: 30px;'>Hourly Performance Forecast</h3>", unsafe_allow_html=True)
|
| 365 |
+
|
| 366 |
+
# Generate hourly data
|
| 367 |
+
hours = list(range(24))
|
| 368 |
+
|
| 369 |
+
# Create mock performance data with a pattern - using session state prediction
|
| 370 |
+
current_prediction = st.session_state.prediction
|
| 371 |
+
base_performance = []
|
| 372 |
+
for hour in hours:
|
| 373 |
+
# Business hours have worse performance (more traffic)
|
| 374 |
+
if 9 <= hour <= 17:
|
| 375 |
+
base_perf = current_prediction * (1 + random.uniform(0.1, 0.3))
|
| 376 |
+
# Night hours have better performance
|
| 377 |
+
elif 0 <= hour <= 5:
|
| 378 |
+
base_perf = current_prediction * (1 - random.uniform(0.1, 0.3))
|
| 379 |
+
# Other hours are close to prediction
|
| 380 |
+
else:
|
| 381 |
+
base_perf = current_prediction * (1 + random.uniform(-0.1, 0.1))
|
| 382 |
+
base_performance.append(base_perf)
|
| 383 |
+
|
| 384 |
+
# Create the chart
|
| 385 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 386 |
+
ax.plot(hours, base_performance, marker='o', color='#7928ca', linewidth=3, markersize=8)
|
| 387 |
+
|
| 388 |
+
# Highlight the selected hour
|
| 389 |
+
ax.scatter([hour_of_day], [base_performance[hour_of_day]], color='#ff0080', s=150, zorder=5)
|
| 390 |
+
|
| 391 |
+
# Add shaded areas for business hours
|
| 392 |
+
ax.axvspan(9, 17, alpha=0.2, color='#ff0080')
|
| 393 |
+
|
| 394 |
+
# Customize the chart
|
| 395 |
+
ax.set_xlabel('Hour of Day')
|
| 396 |
+
ax.set_ylabel('Expected Response Time (ms)')
|
| 397 |
+
ax.set_xticks(range(0, 24, 2))
|
| 398 |
+
|
| 399 |
+
# Add text label for the selected hour
|
| 400 |
+
ax.annotate(f'Selected: {hour_of_day}:00',
|
| 401 |
+
xy=(hour_of_day, base_performance[hour_of_day]),
|
| 402 |
+
xytext=(hour_of_day + 1, base_performance[hour_of_day] + 5),
|
| 403 |
+
arrowprops=dict(facecolor='white', shrink=0.05))
|
| 404 |
+
|
| 405 |
+
# Customize appearance for dark theme
|
| 406 |
+
ax.set_facecolor('#0f1624')
|
| 407 |
+
fig.patch.set_facecolor('#0f1624')
|
| 408 |
+
ax.spines['bottom'].set_color('#444')
|
| 409 |
+
ax.spines['top'].set_color('#444')
|
| 410 |
+
ax.spines['right'].set_color('#444')
|
| 411 |
+
ax.spines['left'].set_color('#444')
|
| 412 |
+
ax.tick_params(axis='x', colors='white')
|
| 413 |
+
ax.tick_params(axis='y', colors='white')
|
| 414 |
+
ax.xaxis.label.set_color('white')
|
| 415 |
+
ax.yaxis.label.set_color('white')
|
| 416 |
+
|
| 417 |
+
st.pyplot(fig)
|
| 418 |
+
|
| 419 |
+
with tab3:
|
| 420 |
+
st.markdown("<h2 style='margin-top: 20px;'>Advanced Settings</h2>", unsafe_allow_html=True)
|
| 421 |
+
|
| 422 |
+
# Create advanced settings
|
| 423 |
+
col1, col2 = st.columns(2)
|
| 424 |
+
|
| 425 |
+
with col1:
|
| 426 |
+
st.markdown("<h3>Model Parameters</h3>", unsafe_allow_html=True)
|
| 427 |
+
|
| 428 |
+
prediction_mode = st.selectbox(
|
| 429 |
+
"Prediction Mode",
|
| 430 |
+
["Standard", "Conservative (Add Buffer)", "Aggressive (Optimize)"],
|
| 431 |
+
index=0
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
confidence_interval = st.slider("Confidence Interval", min_value=80, max_value=99, value=95, step=1)
|
| 435 |
+
|
| 436 |
+
st.markdown("<h3 style='margin-top: 20px;'>Custom Scenarios</h3>", unsafe_allow_html=True)
|
| 437 |
+
|
| 438 |
+
scenario = st.selectbox(
|
| 439 |
+
"Predefined Scenarios",
|
| 440 |
+
["Custom (Current Settings)", "Peak Traffic", "Low Traffic", "Database Maintenance", "Cache Warming"]
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
if scenario != "Custom (Current Settings)":
|
| 444 |
+
st.info(f"Loading {scenario} scenario will override your current settings.")
|
| 445 |
+
|
| 446 |
+
with col2:
|
| 447 |
+
st.markdown("<h3>Visualization Settings</h3>", unsafe_allow_html=True)
|
| 448 |
+
|
| 449 |
+
chart_theme = st.selectbox(
|
| 450 |
+
"Chart Theme",
|
| 451 |
+
["Cosmic Dark", "Neon Glow", "Minimal", "Technical"]
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
show_annotations = st.toggle("Show Detailed Annotations", value=True)
|
| 455 |
+
|
| 456 |
+
st.markdown("<h3 style='margin-top: 20px;'>Export Options</h3>", unsafe_allow_html=True)
|
| 457 |
+
|
| 458 |
+
export_format = st.selectbox(
|
| 459 |
+
"Export Format",
|
| 460 |
+
["JSON", "CSV", "PDF Report", "Interactive HTML"]
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
st.button("✨ Save Configuration")
|
| 464 |
+
|
| 465 |
+
# Add a footer
|
| 466 |
+
st.markdown("""
|
| 467 |
+
<div style='text-align: center; padding: 20px; opacity: 0.7; margin-top: 30px;'>
|
| 468 |
+
<p>🧪 API Response • Powered by Advanced ML • v2.0.3</p>
|
| 469 |
+
</div>
|
| 470 |
+
""", unsafe_allow_html=True)
|
random_forest_api_response_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6eaa63eef203713690852f38a44722ec7f85c23d82f6252e39c15c3371b35c46
|
| 3 |
+
size 143481713
|