File size: 13,250 Bytes
e931856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import sys
import argparse
import cv2
from lib.preprocess import h36m_coco_format, revise_kpts
from lib.hrnet.gen_kpts import gen_video_kpts as hrnet_pose
import os 
import numpy as np
import torch
import torch.nn as nn
import glob
from tqdm import tqdm
import copy

sys.path.append(os.getcwd())
from common.model_poseformer import PoseTransformerV2 as Model
from common.camera import *

import matplotlib
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.gridspec as gridspec

plt.switch_backend('agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42

def show2Dpose(kps, img):
    connections = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5],
                   [5, 6], [0, 7], [7, 8], [8, 9], [9, 10],
                   [8, 11], [11, 12], [12, 13], [8, 14], [14, 15], [15, 16]]

    LR = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], dtype=bool)

    lcolor = (255, 0, 0)
    rcolor = (0, 0, 255)
    thickness = 3

    for j,c in enumerate(connections):
        start = map(int, kps[c[0]])
        end = map(int, kps[c[1]])
        start = list(start)
        end = list(end)
        cv2.line(img, (start[0], start[1]), (end[0], end[1]), lcolor if LR[j] else rcolor, thickness)
        cv2.circle(img, (start[0], start[1]), thickness=-1, color=(0, 255, 0), radius=3)
        cv2.circle(img, (end[0], end[1]), thickness=-1, color=(0, 255, 0), radius=3)

    return img


def show3Dpose(vals, ax):
    ax.view_init(elev=15., azim=70)

    lcolor=(0,0,1)
    rcolor=(1,0,0)

    I = np.array( [0, 0, 1, 4, 2, 5, 0, 7,  8,  8, 14, 15, 11, 12, 8,  9])
    J = np.array( [1, 4, 2, 5, 3, 6, 7, 8, 14, 11, 15, 16, 12, 13, 9, 10])

    LR = np.array([0, 1, 0, 1, 0, 1, 0, 0, 0,   1,  0,  0,  1,  1, 0, 0], dtype=bool)

    for i in np.arange( len(I) ):
        x, y, z = [np.array( [vals[I[i], j], vals[J[i], j]] ) for j in range(3)]
        ax.plot(x, y, z, lw=2, color = lcolor if LR[i] else rcolor)

    RADIUS = 0.72
    RADIUS_Z = 0.7

    xroot, yroot, zroot = vals[0,0], vals[0,1], vals[0,2]
    ax.set_xlim3d([-RADIUS+xroot, RADIUS+xroot])
    ax.set_ylim3d([-RADIUS+yroot, RADIUS+yroot])
    ax.set_zlim3d([-RADIUS_Z+zroot, RADIUS_Z+zroot])
    ax.set_aspect('auto') # works fine in matplotlib==2.2.2

    white = (1.0, 1.0, 1.0, 0.0)
    ax.xaxis.set_pane_color(white) 
    ax.yaxis.set_pane_color(white)
    ax.zaxis.set_pane_color(white)

    ax.tick_params('x', labelbottom = False)
    ax.tick_params('y', labelleft = False)
    ax.tick_params('z', labelleft = False)


def get_pose2D(video_path, output_dir):
    cap = cv2.VideoCapture(video_path)
    width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
    height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)

    print('\nGenerating 2D pose...')
    keypoints, scores = hrnet_pose(video_path, det_dim=416, num_peroson=1, gen_output=True)
    keypoints, scores, valid_frames = h36m_coco_format(keypoints, scores)
    re_kpts = revise_kpts(keypoints, scores, valid_frames)
    print('Generating 2D pose successful!')

    output_dir += 'input_2D/'
    os.makedirs(output_dir, exist_ok=True)

    output_npz = output_dir + 'keypoints.npz'
    np.savez_compressed(output_npz, reconstruction=keypoints)


def img2video(video_path, output_dir):
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS)) + 5

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")

    names = sorted(glob.glob(os.path.join(output_dir + 'pose/', '*.png')))
    img = cv2.imread(names[0])
    size = (img.shape[1], img.shape[0])

    videoWrite = cv2.VideoWriter(output_dir + video_name + '.mp4', fourcc, fps, size) 

    for name in names:
        img = cv2.imread(name)
        videoWrite.write(img)

    videoWrite.release()


def showimage(ax, img):
    ax.set_xticks([])
    ax.set_yticks([]) 
    plt.axis('off')
    ax.imshow(img)


def get_pose3D(video_path, output_dir):
    args, _ = argparse.ArgumentParser().parse_known_args()
    args.embed_dim_ratio, args.depth, args.frames = 32, 4, 243
    args.number_of_kept_frames, args.number_of_kept_coeffs = 27, 27
    args.pad = (args.frames - 1) // 2
    args.previous_dir = 'checkpoint/'
    args.n_joints, args.out_joints = 17, 17

    ## Reload 
    cuda_available = torch.cuda.is_available()
    print(f"CUDA available in get_pose3D: {cuda_available}")
    if cuda_available:
        print(f"CUDA device count: {torch.cuda.device_count()}")
        print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
    
    device = torch.device('cuda' if cuda_available else 'cpu')
    print(f"Using device: {device}")
    
    base_model = Model(args=args)
    
    # Always use DataParallel when CUDA is available (checkpoint expects it)
    if cuda_available:
        model = nn.DataParallel(base_model).to(device)
    else:
        model = base_model.to(device)

    model_dict = model.state_dict()
    # Put the pretrained model of PoseFormerV2 in 'checkpoint/']
    # model_path = sorted(glob.glob(os.path.join(args.previous_dir, '27_243_45.2.bin')))
    # Support both local structure and HF Spaces structure
    if os.path.exists("./demo/lib/checkpoint/27_243_45.2.bin"):
        model_path = "./demo/lib/checkpoint/27_243_45.2.bin"
    elif os.path.exists("./lib/checkpoint/27_243_45.2.bin"):
        model_path = "./lib/checkpoint/27_243_45.2.bin"
    else:
        model_path = "./checkpoint/27_243_45.2.bin"

    map_location = device
    pre_dict = torch.load(model_path, map_location=map_location, weights_only=False)
    
    # Handle DataParallel checkpoint mismatch
    state_dict = pre_dict['model_pos']
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    
    # Check if we need to add or remove "module." prefix
    checkpoint_has_module = any(k.startswith('module.') for k in state_dict.keys())
    model_has_module = isinstance(model, nn.DataParallel)
    
    if checkpoint_has_module and not model_has_module:
        # Remove "module." prefix
        for k, v in state_dict.items():
            name = k[7:] if k.startswith('module.') else k
            new_state_dict[name] = v
    elif not checkpoint_has_module and model_has_module:
        # Add "module." prefix
        for k, v in state_dict.items():
            name = 'module.' + k if not k.startswith('module.') else k
            new_state_dict[name] = v
    else:
        # No change needed
        new_state_dict = state_dict
    
    model.load_state_dict(new_state_dict, strict=True)

    model.eval()

    ## input
    keypoints = np.load(output_dir + 'input_2D/keypoints.npz', allow_pickle=True)['reconstruction']

    cap = cv2.VideoCapture(video_path)
    video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    ## 3D
    print('\nGenerating 3D pose...')
    keypoints_3D = []
    for i in tqdm(range(video_length)):
        ret, img = cap.read()
        if img is None:
            continue
        img_size = img.shape

        ## input frames
        start = max(0, i - args.pad)
        end =  min(i + args.pad, len(keypoints[0])-1)

        input_2D_no = keypoints[0][start:end+1]
        
        left_pad, right_pad = 0, 0
        if input_2D_no.shape[0] != args.frames:
            if i < args.pad:
                left_pad = args.pad - i
            if i > len(keypoints[0]) - args.pad - 1:
                right_pad = i + args.pad - (len(keypoints[0]) - 1)

            input_2D_no = np.pad(input_2D_no, ((left_pad, right_pad), (0, 0), (0, 0)), 'edge')
        
        joints_left =  [4, 5, 6, 11, 12, 13]
        joints_right = [1, 2, 3, 14, 15, 16]

        # input_2D_no += np.random.normal(loc=0.0, scale=5, size=input_2D_no.shape)
        input_2D = normalize_screen_coordinates(input_2D_no, w=img_size[1], h=img_size[0])  

        input_2D_aug = copy.deepcopy(input_2D)
        input_2D_aug[ :, :, 0] *= -1
        input_2D_aug[ :, joints_left + joints_right] = input_2D_aug[ :, joints_right + joints_left]
        input_2D = np.concatenate((np.expand_dims(input_2D, axis=0), np.expand_dims(input_2D_aug, axis=0)), 0)
        # (2, 243, 17, 2)
        
        input_2D = input_2D[np.newaxis, :, :, :, :]

        input_2D = torch.from_numpy(input_2D.astype('float32')).to(device)

        N = input_2D.size(0)

        ## estimation
        output_3D_non_flip = model(input_2D[:, 0]) 
        output_3D_flip     = model(input_2D[:, 1])
        # [1, 1, 17, 3]

        output_3D_flip[:, :, :, 0] *= -1
        output_3D_flip[:, :, joints_left + joints_right, :] = output_3D_flip[:, :, joints_right + joints_left, :] 

        output_3D = (output_3D_non_flip + output_3D_flip) / 2

        output_3D[:, :, 0, :] = 0
        post_out = output_3D[0, 0].cpu().detach().numpy()
        keypoints_3D.append(post_out)
        # print(f'Output 3D shape: {output_3D.shape}, post_out shape: {post_out.shape}, output 3D sample: {output_3D[0]}, post out sample: {post_out}')

        rot =  [0.1407056450843811, -0.1500701755285263, -0.755240797996521, 0.6223280429840088]
        rot = np.array(rot, dtype='float32')
        post_out = camera_to_world(post_out, R=rot, t=0)
        post_out[:, 2] -= np.min(post_out[:, 2])

        input_2D_no = input_2D_no[args.pad]

        ## 2D
        image = show2Dpose(input_2D_no, copy.deepcopy(img))

        output_dir_2D = output_dir +'pose2D/'
        os.makedirs(output_dir_2D, exist_ok=True)
        cv2.imwrite(output_dir_2D + str(('%04d'% i)) + '_2D.png', image)

        ## 3D
        fig = plt.figure(figsize=(9.6, 5.4))
        gs = gridspec.GridSpec(1, 1)
        gs.update(wspace=-0.00, hspace=0.05) 
        ax = plt.subplot(gs[0], projection='3d')
        show3Dpose( post_out, ax)

        output_dir_3D = output_dir +'pose3D/'
        os.makedirs(output_dir_3D, exist_ok=True)
        plt.savefig(output_dir_3D + str(('%04d'% i)) + '_3D.png', dpi=200, format='png', bbox_inches = 'tight')
        plt.clf()
        plt.close(fig)
    
    output_npz = output_dir + 'keypoints_3D.npz'
    np.savez_compressed(output_npz, reconstruction=keypoints_3D)
    print('Generating 3D pose successful!')

    ## all
    image_dir = 'results/' 
    image_2d_dir = sorted(glob.glob(os.path.join(output_dir_2D, '*.png')))
    image_3d_dir = sorted(glob.glob(os.path.join(output_dir_3D, '*.png')))

    print('\nGenerating demo...')
    for i in tqdm(range(len(image_2d_dir))):
        image_2d = plt.imread(image_2d_dir[i])
        image_3d = plt.imread(image_3d_dir[i])

        ## crop
        edge = (image_2d.shape[1] - image_2d.shape[0]) // 2
        image_2d = image_2d[:, edge:image_2d.shape[1] - edge]

        edge = 130
        image_3d = image_3d[edge:image_3d.shape[0] - edge, edge:image_3d.shape[1] - edge]

        ## show
        font_size = 12
        fig = plt.figure(figsize=(15.0, 5.4))
        ax = plt.subplot(121)
        showimage(ax, image_2d)
        ax.set_title("Input", fontsize = font_size)

        ax = plt.subplot(122)
        showimage(ax, image_3d)
        ax.set_title("Reconstruction", fontsize = font_size)

        ## save
        output_dir_pose = output_dir +'pose/'
        os.makedirs(output_dir_pose, exist_ok=True)
        plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
        plt.margins(0, 0)
        plt.savefig(output_dir_pose + str(('%04d'% i)) + '_pose.png', dpi=200, bbox_inches = 'tight')
        plt.clf()
        plt.close(fig)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--video', type=str, default='sample_video.mp4', help='input video')
    parser.add_argument('--gpu', type=str, default='0', help='GPU device ID (set CUDA_VISIBLE_DEVICES before running if needed)')
    args = parser.parse_args()

    # Note: CUDA_VISIBLE_DEVICES must be set BEFORE importing torch
    # Since torch is imported at the top, setting it here won't work
    # Set it in your environment before running: $env:CUDA_VISIBLE_DEVICES="0" (PowerShell) or export CUDA_VISIBLE_DEVICES=0 (bash)
    
    # Verify CUDA availability
    print(f"CUDA available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
        print(f"CUDA device count: {torch.cuda.device_count()}")
        print(f"Current device: {torch.cuda.current_device()}")
        print(f"Device name: {torch.cuda.get_device_name(0)}")
        if "CUDA_VISIBLE_DEVICES" in os.environ:
            print(f"CUDA_VISIBLE_DEVICES={os.environ['CUDA_VISIBLE_DEVICES']}")
    else:
        print("WARNING: CUDA is not available!")
        print("This might be because:")
        print("  1. CUDA_VISIBLE_DEVICES was set incorrectly")
        print("  2. PyTorch was installed without CUDA support")
        print("  3. GPU drivers are not installed")
        print("\nTo use GPU, set CUDA_VISIBLE_DEVICES BEFORE running Python:")
        print("  PowerShell: $env:CUDA_VISIBLE_DEVICES='0'")
        print("  Bash: export CUDA_VISIBLE_DEVICES=0")
        print("\nOr don't set it at all to use the default GPU")

    video_path = './demo/video/' + args.video
    video_name = video_path.split('/')[-1].split('.')[0]
    output_dir = './demo/output/' + video_name + '/'

    get_pose2D(video_path, output_dir)
    get_pose3D(video_path, output_dir)
    img2video(video_path, output_dir)
    print('Generating demo successful!')