Upload 4 files
Browse files- README.md +4 -3
- app.py +618 -0
- gitattributes +35 -0
- requirements.txt +11 -0
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Newproto
|
| 3 |
+
emoji: 🐢
|
| 4 |
colorFrom: yellow
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Untitled0.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1sAnaOUZv4qGku0J47sCP7XvSQnMFsTCL
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# -*- coding: utf-8 -*-
|
| 11 |
+
"""updated_prototype.ipynb
|
| 12 |
+
|
| 13 |
+
Automatically generated by Colab.
|
| 14 |
+
|
| 15 |
+
Original file is located at
|
| 16 |
+
https://colab.research.google.com/drive/1qhzqPF3RjCwAc1pOzOsyDpwFQkm8nadC
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
# !pip install autogluon.multimodal
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
Lanternfly Field Capture Space - Modular Deployment (V11)
|
| 23 |
+
|
| 24 |
+
This version integrates the image classification model (using AutoGluon)
|
| 25 |
+
into a multi-cell Colab deployment structure. All GPS and Data Saving
|
| 26 |
+
functionality remains disabled as placeholders.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
# ==============================================================================
|
| 30 |
+
# CELL 1: SETUP AND IMPORTS
|
| 31 |
+
# ==============================================================================
|
| 32 |
+
|
| 33 |
+
# Install necessary library (Autogluon)
|
| 34 |
+
# NOTE: If running in Colab, uncomment the line below:
|
| 35 |
+
# !pip install autogluon.multimodal --quiet
|
| 36 |
+
|
| 37 |
+
import gradio as gr
|
| 38 |
+
import os
|
| 39 |
+
import json
|
| 40 |
+
import uuid
|
| 41 |
+
import shutil
|
| 42 |
+
import zipfile
|
| 43 |
+
import pathlib
|
| 44 |
+
import tempfile
|
| 45 |
+
import pandas
|
| 46 |
+
import PIL.Image
|
| 47 |
+
from datetime import datetime
|
| 48 |
+
|
| 49 |
+
# NOTE: Since image_model uses these, we bring them back for the model integration
|
| 50 |
+
import huggingface_hub
|
| 51 |
+
import autogluon.multimodal
|
| 52 |
+
|
| 53 |
+
# --- Core App Configuration (Placeholder) ---
|
| 54 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HF_TOKEN_SPACE")
|
| 55 |
+
DATASET_REPO = os.getenv("DATASET_REPO", "rlogh/lanternfly-data")
|
| 56 |
+
|
| 57 |
+
# --- Utility Functions (Active) ---
|
| 58 |
+
|
| 59 |
+
def get_current_time():
|
| 60 |
+
"""Get current timestamp in ISO format"""
|
| 61 |
+
return datetime.now().isoformat()
|
| 62 |
+
|
| 63 |
+
def handle_time_capture():
|
| 64 |
+
"""Handle time capture and return status message and timestamp."""
|
| 65 |
+
timestamp = get_current_time()
|
| 66 |
+
status_msg = f"🕐 **Time Captured**: {timestamp}"
|
| 67 |
+
return status_msg, timestamp
|
| 68 |
+
|
| 69 |
+
# --- Placeholder Stubs ---
|
| 70 |
+
|
| 71 |
+
# def _append_jsonl_in_repo(...): pass
|
| 72 |
+
# def _save_image_to_repo(...): pass
|
| 73 |
+
# def handle_gps_location(...): pass
|
| 74 |
+
|
| 75 |
+
def handle_gps_location(json_str):
|
| 76 |
+
"""Handle GPS location data from JavaScript and return values for the textboxes"""
|
| 77 |
+
try:
|
| 78 |
+
data = json.loads(json_str)
|
| 79 |
+
if 'error' in data:
|
| 80 |
+
status_msg = f"❌ **GPS Error**: {data['error']}"
|
| 81 |
+
return status_msg, data['error'], "", "", ""
|
| 82 |
+
|
| 83 |
+
lat = str(data.get('latitude', ''))
|
| 84 |
+
lon = str(data.get('longitude', ''))
|
| 85 |
+
accuracy = str(data.get('accuracy', ''))
|
| 86 |
+
timestamp = data.get('timestamp', '')
|
| 87 |
+
|
| 88 |
+
# Convert timestamp to ISO string if it's a number
|
| 89 |
+
if timestamp and isinstance(timestamp, (int, float)):
|
| 90 |
+
from datetime import datetime
|
| 91 |
+
timestamp = datetime.fromtimestamp(timestamp / 1000).isoformat()
|
| 92 |
+
|
| 93 |
+
status_msg = f"✅ **GPS Captured**: {lat[:8]}, {lon[:8]} (accuracy: {accuracy}m)"
|
| 94 |
+
return status_msg, lat, lon, accuracy, timestamp
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
status_msg = f"❌ **Error**: {str(e)}"
|
| 98 |
+
return status_msg, f"Error parsing GPS data: {str(e)}", "", "", ""
|
| 99 |
+
|
| 100 |
+
def get_gps_js():
|
| 101 |
+
"""JavaScript for GPS capture using hidden textbox approach"""
|
| 102 |
+
return """
|
| 103 |
+
() => {
|
| 104 |
+
// find the textarea element inside Gradio textbox by its elem_id
|
| 105 |
+
const textarea = document.querySelector('#hidden_gps_input textarea');
|
| 106 |
+
if (!textarea) {
|
| 107 |
+
console.log("Hidden GPS textbox not found");
|
| 108 |
+
return;
|
| 109 |
+
}
|
| 110 |
+
if (!navigator.geolocation) {
|
| 111 |
+
textarea.value = JSON.stringify({error: "Geolocation not supported"});
|
| 112 |
+
textarea.dispatchEvent(new Event('input', { bubbles: true }));
|
| 113 |
+
return;
|
| 114 |
+
}
|
| 115 |
+
navigator.geolocation.getCurrentPosition(
|
| 116 |
+
function(position) {
|
| 117 |
+
const data = {
|
| 118 |
+
latitude: position.coords.latitude,
|
| 119 |
+
longitude: position.coords.longitude,
|
| 120 |
+
accuracy: position.coords.accuracy,
|
| 121 |
+
timestamp: new Date().toISOString()
|
| 122 |
+
};
|
| 123 |
+
textarea.value = JSON.stringify(data);
|
| 124 |
+
// dispatch 'input' event so Gradio notices the change
|
| 125 |
+
textarea.dispatchEvent(new Event('input', { bubbles: true }));
|
| 126 |
+
},
|
| 127 |
+
function(err) {
|
| 128 |
+
textarea.value = JSON.stringify({ error: err.message });
|
| 129 |
+
textarea.dispatchEvent(new Event('input', { bubbles: true }));
|
| 130 |
+
},
|
| 131 |
+
{ enableHighAccuracy: true, timeout: 10000 }
|
| 132 |
+
);
|
| 133 |
+
}
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
def save_to_dataset(image, lat, lon, accuracy_m, device_ts):
|
| 137 |
+
"""Placeholder for Save function. Returns a simple confirmation and mock data."""
|
| 138 |
+
if image is None:
|
| 139 |
+
return "❌ **Error**: Please capture or upload a photo first.", ""
|
| 140 |
+
|
| 141 |
+
# Mock Data for preview
|
| 142 |
+
mock_data = {
|
| 143 |
+
"image": "image.jpg",
|
| 144 |
+
"latitude": lat,
|
| 145 |
+
"longitude": lon,
|
| 146 |
+
"accuracy_m": accuracy_m,
|
| 147 |
+
"device_timestamp": device_ts,
|
| 148 |
+
"status": "Saving Disabled"
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# You must include the return statement
|
| 152 |
+
status = "✅ **Test Save Successful!** (No data saved to HF dataset)"
|
| 153 |
+
return status, json.dumps(mock_data, indent=2)
|
| 154 |
+
|
| 155 |
+
# FIX 2: Define placeholder_time_capture (alias for handle_time_capture)
|
| 156 |
+
placeholder_time_capture = handle_time_capture
|
| 157 |
+
|
| 158 |
+
# FIX 3: Define placeholder_save_action (alias for save_to_dataset)
|
| 159 |
+
placeholder_save_action = save_to_dataset
|
| 160 |
+
|
| 161 |
+
# ==============================================================================
|
| 162 |
+
# CELL 2: MODEL LOADING AND PREDICTION LOGIC
|
| 163 |
+
# ==============================================================================
|
| 164 |
+
|
| 165 |
+
# --- Model Configuration ---
|
| 166 |
+
# NOTE: Swap MODEL_REPO_ID and ZIP_FILENAME to load different models
|
| 167 |
+
MODEL_REPO_ID = "ddecosmo/lanternfly_classifier"
|
| 168 |
+
ZIP_FILENAME = "autogluon_image_predictor_dir.zip"
|
| 169 |
+
CLASS_LABELS = {0: "Lanternfly", 1: "Other Insect", 2: "No Insect"}
|
| 170 |
+
|
| 171 |
+
# Local cache/extract dirs
|
| 172 |
+
CACHE_DIR = pathlib.Path("hf_assets")
|
| 173 |
+
EXTRACT_DIR = CACHE_DIR / "predictor_native"
|
| 174 |
+
PREDICTOR = None # Initialized below
|
| 175 |
+
|
| 176 |
+
# Download & load the native predictor
|
| 177 |
+
def _prepare_predictor_dir() -> str:
|
| 178 |
+
"""Downloads ZIP model from HF and extracts it for AutoGluon loading."""
|
| 179 |
+
CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
| 180 |
+
|
| 181 |
+
# Use HF_TOKEN from environment if available
|
| 182 |
+
token = os.getenv("HF_TOKEN", None)
|
| 183 |
+
|
| 184 |
+
local_zip = huggingface_hub.hf_hub_download(
|
| 185 |
+
repo_id=MODEL_REPO_ID,
|
| 186 |
+
filename=ZIP_FILENAME,
|
| 187 |
+
repo_type="model",
|
| 188 |
+
token=token,
|
| 189 |
+
local_dir=str(CACHE_DIR),
|
| 190 |
+
local_dir_use_symlinks=False,
|
| 191 |
+
)
|
| 192 |
+
if EXTRACT_DIR.exists():
|
| 193 |
+
shutil.rmtree(EXTRACT_DIR)
|
| 194 |
+
EXTRACT_DIR.mkdir(parents=True, exist_ok=True)
|
| 195 |
+
with zipfile.ZipFile(local_zip, "r") as zf:
|
| 196 |
+
zf.extractall(str(EXTRACT_DIR))
|
| 197 |
+
|
| 198 |
+
# Handle single nested directory structure common with AutoGluon exports
|
| 199 |
+
contents = list(EXTRACT_DIR.iterdir())
|
| 200 |
+
predictor_root = contents[0] if (len(contents) == 1 and contents[0].is_dir()) else EXTRACT_DIR
|
| 201 |
+
return str(predictor_root)
|
| 202 |
+
|
| 203 |
+
# Load the model only once
|
| 204 |
+
PREDICTOR_LOAD_STATUS = "Attempting to load AutoGluon Predictor..." # FIX 4: Define PREDICTOR_LOAD_STATUS
|
| 205 |
+
try:
|
| 206 |
+
PREDICTOR_DIR = _prepare_predictor_dir()
|
| 207 |
+
PREDICTOR = autogluon.multimodal.MultiModalPredictor.load(PREDICTOR_DIR)
|
| 208 |
+
PREDICTOR_LOAD_STATUS = "✅ AutoGluon Predictor loaded successfully."
|
| 209 |
+
print(PREDICTOR_LOAD_STATUS)
|
| 210 |
+
except Exception as e:
|
| 211 |
+
PREDICTOR_LOAD_STATUS = f"❌ Failed to load AutoGluon Predictor: {e}"
|
| 212 |
+
print(PREDICTOR_LOAD_STATUS)
|
| 213 |
+
# Set PREDICTOR to None so prediction function can handle the failure gracefully
|
| 214 |
+
PREDICTOR = None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def do_predict(pil_img: PIL.Image.Image):
|
| 218 |
+
"""Performs inference using the loaded MultiModalPredictor."""
|
| 219 |
+
# Ensure the predictor is available
|
| 220 |
+
if PREDICTOR is None:
|
| 221 |
+
return {"Error": 1.0}, "Model not loaded. Check logs.", ""
|
| 222 |
+
|
| 223 |
+
if pil_img is None:
|
| 224 |
+
return {"No Image": 1.0}, "No image provided.", ""
|
| 225 |
+
|
| 226 |
+
# Save to temp file for AutoGluon input format
|
| 227 |
+
tmpdir = pathlib.Path(tempfile.mkdtemp())
|
| 228 |
+
img_path = tmpdir / "input.png"
|
| 229 |
+
pil_img.save(img_path)
|
| 230 |
+
|
| 231 |
+
df = pandas.DataFrame({"image": [str(img_path)]})
|
| 232 |
+
|
| 233 |
+
# Perform prediction
|
| 234 |
+
proba_df = PREDICTOR.predict_proba(df)
|
| 235 |
+
|
| 236 |
+
# Rename columns using the defined CLASS_LABELS for clarity
|
| 237 |
+
proba_df = proba_df.rename(columns=CLASS_LABELS)
|
| 238 |
+
row = proba_df.iloc[0]
|
| 239 |
+
|
| 240 |
+
# Format result for Gradio Label component
|
| 241 |
+
pretty_dict = {
|
| 242 |
+
label: float(row.get(label, 0.0)) for label in CLASS_LABELS.values()
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
# Prepare confidence string
|
| 246 |
+
# Assuming two classes, provide probability for each
|
| 247 |
+
confidence_info = ", ".join([
|
| 248 |
+
f"{label}: {prob:.2f}" for label, prob in pretty_dict.items()
|
| 249 |
+
])
|
| 250 |
+
|
| 251 |
+
return pretty_dict, confidence_info
|
| 252 |
+
|
| 253 |
+
# ==============================================================================
|
| 254 |
+
# CELL 4: KERNEL DENSITY ESTIMATION (KDE) CORE LOGIC
|
| 255 |
+
# Must be run after Cell 1 (Imports)
|
| 256 |
+
# ==============================================================================
|
| 257 |
+
|
| 258 |
+
# --- Necessary Imports for KDE (mostly pulled from the provided prototype) ---
|
| 259 |
+
from scipy.stats import gaussian_kde
|
| 260 |
+
import numpy as np
|
| 261 |
+
import os
|
| 262 |
+
import matplotlib.pyplot as plt
|
| 263 |
+
import matplotlib.cm as cm
|
| 264 |
+
import folium
|
| 265 |
+
import matplotlib.colors
|
| 266 |
+
import pandas as pd
|
| 267 |
+
from PIL import Image
|
| 268 |
+
import io
|
| 269 |
+
from folium import Marker # We need Marker for plotting points
|
| 270 |
+
|
| 271 |
+
# --- Organized version #1: Define Pittsburgh Coordinate Range ---
|
| 272 |
+
# Define the latitude and longitude boundaries for the Pittsburgh area
|
| 273 |
+
pittsburgh_lat_min, pittsburgh_lat_max = 40.3, 40.6
|
| 274 |
+
pittsburgh_lon_min, pittsburgh_lon_max = -80.2, -79.8
|
| 275 |
+
pittsburgh_lat = 40.4406 # Example center latitude
|
| 276 |
+
pittsburgh_lon = -79.9959 # Example center longitude
|
| 277 |
+
|
| 278 |
+
# Define the number of points for each distribution
|
| 279 |
+
num_points = 500
|
| 280 |
+
|
| 281 |
+
# --- Organized version #2: Generate and save temporary CSV files ---
|
| 282 |
+
|
| 283 |
+
# Helper functions for generating different spatial distributions
|
| 284 |
+
def generate_uniform_points(lat_min, lat_max, lon_min, lon_max, num_points):
|
| 285 |
+
lats = np.random.uniform(lat_min, lat_max, num_points)
|
| 286 |
+
lons = np.random.uniform(lon_min, lon_max, num_points)
|
| 287 |
+
return pd.DataFrame({'latitude': lats, 'longitude': lons})
|
| 288 |
+
|
| 289 |
+
def generate_normal_points(center_lat, center_lon, lat_std, lon_std, num_points):
|
| 290 |
+
lats = np.random.normal(center_lat, lat_std, num_points)
|
| 291 |
+
lons = np.random.normal(center_lon, lon_std, num_points)
|
| 292 |
+
valid_indices = (lats >= pittsburgh_lat_min) & (lats <= pittsburgh_lat_max) & (lons >= pittsburgh_lon_min) & (lons <= pittsburgh_lon_max)
|
| 293 |
+
return pd.DataFrame({'latitude': lats[valid_indices], 'longitude': lons[valid_indices]})
|
| 294 |
+
|
| 295 |
+
def generate_bimodal_points(center1_lat, center1_lon, center2_lat, center2_lon, lat_std, lon_std, num_points):
|
| 296 |
+
num_points_half = num_points // 2
|
| 297 |
+
lats1 = np.random.normal(center1_lat, lat_std, num_points_half)
|
| 298 |
+
lons1 = np.random.normal(center1_lon, lon_std, num_points_half)
|
| 299 |
+
lats2 = np.random.normal(center2_lat, lat_std, num_points - num_points_half)
|
| 300 |
+
lons2 = np.random.normal(center2_lon, lon_std, num_points - num_points_half)
|
| 301 |
+
lats = np.concatenate([lats1, lats2])
|
| 302 |
+
lons = np.concatenate([lons1, lons2])
|
| 303 |
+
valid_indices = (lats >= pittsburgh_lat_min) & (lats <= pittsburgh_lat_max) & (lons >= pittsburgh_lon_min) & (lons <= pittsburgh_lon_max)
|
| 304 |
+
return pd.DataFrame({'latitude': lats[valid_indices], 'longitude': lons[valid_indices]})
|
| 305 |
+
|
| 306 |
+
def generate_poisson_like_points(lat_min, lat_max, lon_min, lon_max, num_points, num_clusters=10, cluster_std=0.01):
|
| 307 |
+
all_lats, all_lons = [], []
|
| 308 |
+
points_per_cluster = num_points // num_clusters
|
| 309 |
+
cluster_centers_lat = np.random.uniform(lat_min + cluster_std, lat_max - cluster_std, num_clusters)
|
| 310 |
+
cluster_centers_lon = np.random.uniform(lon_min + cluster_std, lon_max - cluster_std, num_clusters)
|
| 311 |
+
for i in range(num_clusters):
|
| 312 |
+
lats = np.random.normal(cluster_centers_lat[i], cluster_std, points_per_cluster)
|
| 313 |
+
lons = np.random.normal(cluster_centers_lon[i], cluster_std, points_per_cluster)
|
| 314 |
+
all_lats.extend(lats)
|
| 315 |
+
all_lons.extend(lons)
|
| 316 |
+
lats = np.array(all_lats)
|
| 317 |
+
lons = np.array(all_lons)
|
| 318 |
+
valid_indices = (lats >= lat_min) & (lats <= lat_max) & (lons >= lon_min) & (lons <= lon_max)
|
| 319 |
+
return pd.DataFrame({'latitude': lats[valid_indices], 'longitude': lons[valid_indices]})
|
| 320 |
+
|
| 321 |
+
# Generate and save all datasets
|
| 322 |
+
uniform_df = generate_uniform_points(pittsburgh_lat_min, pittsburgh_lat_max, pittsburgh_lon_min, pittsburgh_lon_max, num_points)
|
| 323 |
+
normal_df = generate_normal_points(pittsburgh_lat, pittsburgh_lon, 0.05, 0.05, num_points)
|
| 324 |
+
bimodal_center1_lat, bimodal_center1_lon = 40.4, -80.1
|
| 325 |
+
bimodal_center2_lat, bimodal_center2_lon = 40.5, -79.9
|
| 326 |
+
bimodal_df = generate_bimodal_points(bimodal_center1_lat, bimodal_center1_lon, bimodal_center2_lat, bimodal_center2_lon, 0.03, 0.03, num_points)
|
| 327 |
+
poisson_like_df = generate_poisson_like_points(pittsburgh_lat_min, pittsburgh_lat_max, pittsburgh_lon_min, pittsburgh_lon_max, num_points)
|
| 328 |
+
|
| 329 |
+
csv_dir = "spatial_data"
|
| 330 |
+
os.makedirs(csv_dir, exist_ok=True)
|
| 331 |
+
|
| 332 |
+
distribution_files = {
|
| 333 |
+
"Uniform": os.path.join(csv_dir, "uniform_coords.csv"),
|
| 334 |
+
"Normal": os.path.join(csv_dir, "normal_coords.csv"),
|
| 335 |
+
"Bimodal": os.path.join(csv_dir, "bimodal_coords.csv"),
|
| 336 |
+
"Poisson-like": os.path.join(csv_dir, "poisson_like_coords.csv")
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
uniform_df.to_csv(distribution_files["Uniform"], index=False)
|
| 340 |
+
normal_df.to_csv(distribution_files["Normal"], index=False)
|
| 341 |
+
bimodal_df.to_csv(distribution_files["Bimodal"], index=False)
|
| 342 |
+
poisson_like_df.to_csv(distribution_files["Poisson-like"], index=False)
|
| 343 |
+
|
| 344 |
+
print("✅ Sample spatial data files generated and saved to 'spatial_data' directory.")
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
# --- Organized version #3 & #4: KDE Calculation and Plotting Functions ---
|
| 348 |
+
|
| 349 |
+
def load_data_and_calculate_kde(distribution_name):
|
| 350 |
+
"""Loads data, checks columns, and computes the gaussian KDE object."""
|
| 351 |
+
file_path = distribution_files.get(distribution_name)
|
| 352 |
+
if file_path is None:
|
| 353 |
+
return None, None, None, f"Error: Unknown distribution name '{distribution_name}'"
|
| 354 |
+
|
| 355 |
+
try:
|
| 356 |
+
df = pd.read_csv(file_path)
|
| 357 |
+
if 'latitude' not in df.columns or 'longitude' not in df.columns:
|
| 358 |
+
return None, None, None, f"Error: CSV must contain 'latitude' and 'longitude' columns."
|
| 359 |
+
|
| 360 |
+
latitudes = df['latitude'].values
|
| 361 |
+
longitudes = df['longitude'].values
|
| 362 |
+
coordinates = np.vstack([longitudes, latitudes]) # [Lons, Lats] for KDE
|
| 363 |
+
kde_object = gaussian_kde(coordinates)
|
| 364 |
+
|
| 365 |
+
return latitudes, longitudes, kde_object, None
|
| 366 |
+
|
| 367 |
+
except Exception as e:
|
| 368 |
+
return None, None, None, f"Error loading data or calculating KDE: {e}"
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def plot_kde_and_points(min_lat, max_lat, min_lon, max_lon, original_latitudes, original_longitudes, kde_object):
|
| 372 |
+
"""Generates a static KDE heatmap (Matplotlib) and an interactive Folium map."""
|
| 373 |
+
|
| 374 |
+
# --- 1. Matplotlib Static Heatmap ---
|
| 375 |
+
x, y = np.mgrid[min_lon:max_lon:100j, min_lat:max_lat:100j]
|
| 376 |
+
positions = np.vstack([x.ravel(), y.ravel()])
|
| 377 |
+
z = kde_object(positions)
|
| 378 |
+
z = z.reshape(x.shape)
|
| 379 |
+
z_normalized = (z - z.min()) / (z.max() - z.min()) if z.max() > z.min() else np.zeros_like(z)
|
| 380 |
+
|
| 381 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
| 382 |
+
im = ax.imshow(z_normalized.T, origin='lower',
|
| 383 |
+
extent=[min_lon, max_lon, min_lat, max_lat],
|
| 384 |
+
cmap='hot', aspect='auto')
|
| 385 |
+
fig.colorbar(im, ax=ax, label='Density')
|
| 386 |
+
ax.set_xlabel('Longitude')
|
| 387 |
+
ax.set_ylabel('Latitude')
|
| 388 |
+
ax.set_title('Kernel Density Estimate Heatmap (Static)')
|
| 389 |
+
|
| 390 |
+
# Convert plot to PIL Image
|
| 391 |
+
buf = io.BytesIO()
|
| 392 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
| 393 |
+
buf.seek(0)
|
| 394 |
+
pil_image = Image.open(buf)
|
| 395 |
+
plt.close(fig)
|
| 396 |
+
|
| 397 |
+
# --- 2. Folium Interactive Map with Colored Points ---
|
| 398 |
+
original_coordinates = np.vstack([original_longitudes, original_latitudes])
|
| 399 |
+
density_at_original_points = kde_object(original_coordinates)
|
| 400 |
+
density_min = density_at_original_points.min()
|
| 401 |
+
density_max = density_at_original_points.max()
|
| 402 |
+
density_normalized = (density_at_original_points - density_min) / (density_max - density_min + 1e-9)
|
| 403 |
+
|
| 404 |
+
colormap = cm.get_cmap('viridis')
|
| 405 |
+
map_center_lat = np.mean(original_latitudes)
|
| 406 |
+
map_center_lon = np.mean(original_longitudes)
|
| 407 |
+
m_colored_points = folium.Map(location=[map_center_lat, map_center_lon], zoom_start=10)
|
| 408 |
+
|
| 409 |
+
for lat, lon, density_norm in zip(original_latitudes, original_longitudes, density_normalized):
|
| 410 |
+
color = matplotlib.colors.rgb2hex(colormap(density_norm))
|
| 411 |
+
folium.CircleMarker(
|
| 412 |
+
location=[lat, lon],
|
| 413 |
+
radius=5,
|
| 414 |
+
color=color,
|
| 415 |
+
fill=True,
|
| 416 |
+
fill_color=color,
|
| 417 |
+
fill_opacity=0.7,
|
| 418 |
+
tooltip=f"Density: {kde_object([lon, lat])[0]:.4f}"
|
| 419 |
+
).add_to(m_colored_points)
|
| 420 |
+
|
| 421 |
+
# Convert Folium map to HTML
|
| 422 |
+
colored_points_map_html = m_colored_points._repr_html_()
|
| 423 |
+
|
| 424 |
+
return pil_image, colored_points_map_html
|
| 425 |
+
|
| 426 |
+
# Define the main function that will be called by Gradio
|
| 427 |
+
def update_visualization(distribution_name):
|
| 428 |
+
"""Loads data, calculates KDE, and generates visualizations for Gradio."""
|
| 429 |
+
latitudes, longitudes, kde_object, error = load_data_and_calculate_kde(distribution_name)
|
| 430 |
+
|
| 431 |
+
if error:
|
| 432 |
+
# Return placeholder outputs and the error message
|
| 433 |
+
return None, f"<h2>Error</h2><p>{error}</p>", error # Return error message in HTML
|
| 434 |
+
|
| 435 |
+
# Generate visualizations using the Pittsburgh bounds
|
| 436 |
+
pil_image, colored_points_map_html = plot_kde_and_points(
|
| 437 |
+
pittsburgh_lat_min, pittsburgh_lat_max, pittsburgh_lon_min, pittsburgh_lon_max,
|
| 438 |
+
latitudes, longitudes, kde_object
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
return pil_image, colored_points_map_html, ""
|
| 442 |
+
|
| 443 |
+
# =====================================================================================
|
| 444 |
+
# CELL 4: GRADIO UI DEFINITIONS (Three Tabs)
|
| 445 |
+
# =====================================================================================
|
| 446 |
+
|
| 447 |
+
# UPDATED: Accept the shared image component as an argument
|
| 448 |
+
def field_capture_ui(camera):
|
| 449 |
+
with gr.Blocks():
|
| 450 |
+
gr.Markdown("# 🦋 Lanternfly Data Logging")
|
| 451 |
+
gr.Markdown("Input location data for the uploaded photo. GPS functionality is now enabled!")
|
| 452 |
+
|
| 453 |
+
with gr.Column(scale=1):
|
| 454 |
+
|
| 455 |
+
# REMOVED: The redundant gr.Image component
|
| 456 |
+
|
| 457 |
+
gr.Markdown("### 📍 Location Data")
|
| 458 |
+
gr.Markdown("Click 'Get GPS' to automatically capture your location, or manually enter coordinates.")
|
| 459 |
+
|
| 460 |
+
# GPS Button (now functional)
|
| 461 |
+
gps_btn = gr.Button("📍 Get GPS", variant="primary", elem_id="gps_btn_id")
|
| 462 |
+
|
| 463 |
+
# Hidden Input (kept for UI layout and future restoration)
|
| 464 |
+
hidden_gps_input = gr.Textbox(visible=False, elem_id="hidden_gps_input")
|
| 465 |
+
|
| 466 |
+
with gr.Row():
|
| 467 |
+
lat_box = gr.Textbox(label="Latitude", interactive=True, value="0.0", elem_id="lat")
|
| 468 |
+
lon_box = gr.Textbox(label="Longitude", interactive=True, value="0.0", elem_id="lon")
|
| 469 |
+
|
| 470 |
+
with gr.Row():
|
| 471 |
+
accuracy_box = gr.Textbox(label="Accuracy (meters)", interactive=True, value="0.0", elem_id="accuracy")
|
| 472 |
+
device_ts_box = gr.Textbox(label="Device Timestamp", interactive=True, elem_id="device_ts")
|
| 473 |
+
|
| 474 |
+
time_btn = gr.Button("🕐 Get Current Time", variant="secondary")
|
| 475 |
+
save_btn = gr.Button("💾 Save (Test Mode)", variant="secondary")
|
| 476 |
+
|
| 477 |
+
status = gr.Markdown("🔄 **Ready. Saving is in test mode.**")
|
| 478 |
+
preview = gr.JSON(label="Preview JSON", visible=True)
|
| 479 |
+
|
| 480 |
+
# Event handlers (using placeholders/NoAction)
|
| 481 |
+
|
| 482 |
+
# GPS Button (Click event to trigger JavaScript GPS function)
|
| 483 |
+
gps_btn.click(
|
| 484 |
+
fn=None, inputs=[], outputs=[], js=get_gps_js()
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
hidden_gps_input.change(
|
| 488 |
+
fn=handle_gps_location,
|
| 489 |
+
inputs=[hidden_gps_input],
|
| 490 |
+
outputs=[status, lat_box, lon_box, accuracy_box, device_ts_box]
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
time_btn.click(
|
| 494 |
+
fn=placeholder_time_capture,
|
| 495 |
+
inputs=[],
|
| 496 |
+
outputs=[status, device_ts_box]
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
# The Save button now uses the passed 'camera' component
|
| 500 |
+
save_btn.click(
|
| 501 |
+
fn=placeholder_save_action,
|
| 502 |
+
inputs=[camera, lat_box, lon_box, accuracy_box, device_ts_box],
|
| 503 |
+
outputs=[status, preview]
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
# Return the output components needed by the main app structure
|
| 507 |
+
return status, preview
|
| 508 |
+
|
| 509 |
+
# UPDATED: Accept the shared image component as an argument
|
| 510 |
+
def image_model_ui(image_in):
|
| 511 |
+
with gr.Blocks():
|
| 512 |
+
gr.Markdown("# 🤖 Image Classification Results")
|
| 513 |
+
gr.Markdown("Uses an AutoGluon multimodal model to classify the uploaded image.")
|
| 514 |
+
|
| 515 |
+
if PREDICTOR is None:
|
| 516 |
+
gr.Warning(PREDICTOR_LOAD_STATUS)
|
| 517 |
+
|
| 518 |
+
# REMOVED: The redundant gr.Image component
|
| 519 |
+
|
| 520 |
+
with gr.Row():
|
| 521 |
+
proba_pretty = gr.Label(num_top_classes=2, label="Class Probabilities")
|
| 522 |
+
confidence_output = gr.Textbox(label="Prediction Summary")
|
| 523 |
+
|
| 524 |
+
# Attach prediction logic to the passed-in image component
|
| 525 |
+
image_in.change(
|
| 526 |
+
fn=do_predict,
|
| 527 |
+
inputs=[image_in],
|
| 528 |
+
outputs=[proba_pretty, confidence_output]
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
gr.Examples(
|
| 532 |
+
examples=["/content/hf_assets/predictor_native/image/0.png", "/content/hf_assets/predictor_native/image/1.png"],
|
| 533 |
+
inputs=[image_in],
|
| 534 |
+
label="Representative Examples (Files must be present after model download)",
|
| 535 |
+
examples_per_page=2,
|
| 536 |
+
cache_examples=False,
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
def kde_analysis_ui():
|
| 540 |
+
distribution_choices = list(distribution_files.keys())
|
| 541 |
+
|
| 542 |
+
with gr.Blocks():
|
| 543 |
+
gr.Markdown("# 🗺️ Spatial Analysis (KDE)")
|
| 544 |
+
gr.Markdown("Visualizes the Kernel Density Estimate (KDE) for different synthetic spatial distributions around Pittsburgh.")
|
| 545 |
+
|
| 546 |
+
gr.Warning("Data generation occurs on app load and is randomized.")
|
| 547 |
+
|
| 548 |
+
dropdown = gr.Dropdown(
|
| 549 |
+
choices=distribution_choices,
|
| 550 |
+
label="Select Spatial Distribution",
|
| 551 |
+
value=distribution_choices[0]
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
with gr.Row():
|
| 555 |
+
static_map = gr.Image(label="Static Kernel Density Map (Matplotlib)")
|
| 556 |
+
interactive_map = gr.HTML(label="Interactive Points Map Colored by KDE (Folium)")
|
| 557 |
+
|
| 558 |
+
error_box = gr.Textbox(label="Error Message", visible=False)
|
| 559 |
+
|
| 560 |
+
# Initial call to populate maps on change
|
| 561 |
+
dropdown.change(
|
| 562 |
+
fn=update_visualization,
|
| 563 |
+
inputs=[dropdown],
|
| 564 |
+
outputs=[static_map, interactive_map, error_box]
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
# =====================================================================================
|
| 569 |
+
# MAIN APP LAUNCH
|
| 570 |
+
# =====================================================================================
|
| 571 |
+
|
| 572 |
+
# Define the final application container with two main tabs
|
| 573 |
+
with gr.Blocks(title="Unified Lanternfly App") as app:
|
| 574 |
+
|
| 575 |
+
# TAB 1: COMBINED CAPTURE AND CLASSIFICATION
|
| 576 |
+
with gr.Tab("Capture & Classification"):
|
| 577 |
+
gr.Info("GPS functionality is now enabled! Data saving is in test mode.")
|
| 578 |
+
|
| 579 |
+
# NEW: Define the single, shared image input here
|
| 580 |
+
shared_image_input = gr.Image(
|
| 581 |
+
streaming=False, height=380, label="📷 Upload Photo (or use camera)",
|
| 582 |
+
type="pil", sources=["webcam", "upload"]
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# NEW: Layout the single image and the two UI blocks side-by-side
|
| 586 |
+
with gr.Row():
|
| 587 |
+
with gr.Column(scale=1):
|
| 588 |
+
field_capture_ui(shared_image_input)
|
| 589 |
+
|
| 590 |
+
with gr.Column(scale=1):
|
| 591 |
+
# Pass the shared input to the model UI
|
| 592 |
+
image_model_ui(shared_image_input)
|
| 593 |
+
|
| 594 |
+
# TAB 2: KDE ANALYSIS
|
| 595 |
+
with gr.Tab("Spatial Analysis (KDE)"):
|
| 596 |
+
# 1. Define the UI components needed for output (hidden)
|
| 597 |
+
dropdown = gr.Dropdown(
|
| 598 |
+
choices=list(distribution_files.keys()),
|
| 599 |
+
value=list(distribution_files.keys())[0],
|
| 600 |
+
visible=False # Hidden because we redefine it in kde_analysis_ui
|
| 601 |
+
)
|
| 602 |
+
static_map_out = gr.Image(visible=False)
|
| 603 |
+
interactive_map_out = gr.HTML(visible=False)
|
| 604 |
+
error_box_out = gr.Textbox(visible=False)
|
| 605 |
+
|
| 606 |
+
# 2. Render the KDE UI (which defines its own visible components)
|
| 607 |
+
kde_analysis_ui()
|
| 608 |
+
|
| 609 |
+
# Trigger initial KDE load using the top-level app.load() event
|
| 610 |
+
app.load(
|
| 611 |
+
fn=update_visualization,
|
| 612 |
+
inputs=[dropdown], # Pass the default value from the hidden dropdown
|
| 613 |
+
outputs=[static_map_out, interactive_map_out, error_box_out], # Dummy outputs to satisfy the call
|
| 614 |
+
queue=False
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
if __name__ == "__main__":
|
| 618 |
+
app.launch()
|
gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
autogluon.multimodal
|
| 3 |
+
|
| 4 |
+
# --- Scientific, Data, and Utility Dependencies ---
|
| 5 |
+
pandas
|
| 6 |
+
numpy
|
| 7 |
+
scipy
|
| 8 |
+
Pillow
|
| 9 |
+
huggingface-hub
|
| 10 |
+
matplotlib
|
| 11 |
+
folium
|