Spaces:
Sleeping
Sleeping
extract generate_with_updates to global scope
Browse files
app.py
CHANGED
|
@@ -367,6 +367,224 @@ def initialize_app():
|
|
| 367 |
# Load model automatically when script starts
|
| 368 |
initialize_app()
|
| 369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
# Create the Gradio interface
|
| 371 |
def create_interface():
|
| 372 |
# Create custom theme with light green progress bars
|
|
@@ -577,237 +795,47 @@ def create_interface():
|
|
| 577 |
baseline_tokens_queue = queue.Queue()
|
| 578 |
stop_generation = threading.Event()
|
| 579 |
|
| 580 |
-
def baseline_progress_updater(prog_value):
|
| 581 |
-
"""Update the baseline progress via the queue"""
|
| 582 |
-
baseline_progress_queue.put(prog_value)
|
| 583 |
-
|
| 584 |
-
def baseline_tokens_updater(text, token_count):
|
| 585 |
-
"""Update the baseline generated text via the queue"""
|
| 586 |
-
global baseline_think_tag_detected, baseline_progress_frozen, baseline_pre_think_content, baseline_post_think_content
|
| 587 |
-
|
| 588 |
-
# Check if </think> tag appears in the text
|
| 589 |
-
if not baseline_think_tag_detected and "</think>" in text:
|
| 590 |
-
baseline_think_tag_detected = True
|
| 591 |
-
baseline_progress_frozen = True
|
| 592 |
-
|
| 593 |
-
# Split content at </think>
|
| 594 |
-
parts = text.split("</think>", 1)
|
| 595 |
-
baseline_pre_think_content = parts[0] + "</think>"
|
| 596 |
-
baseline_post_think_content = parts[1] if len(parts) > 1 else ""
|
| 597 |
-
|
| 598 |
-
# Signal content split with token count
|
| 599 |
-
baseline_tokens_queue.put(("THINK_TAG_DETECTED", baseline_pre_think_content, baseline_post_think_content, token_count))
|
| 600 |
-
elif baseline_think_tag_detected:
|
| 601 |
-
# Update post-think content
|
| 602 |
-
if "</think>" in text:
|
| 603 |
-
parts = text.split("</think>", 1)
|
| 604 |
-
baseline_post_think_content = parts[1] if len(parts) > 1 else ""
|
| 605 |
-
baseline_tokens_queue.put(("POST_THINK_UPDATE", baseline_post_think_content))
|
| 606 |
-
else:
|
| 607 |
-
baseline_tokens_queue.put(("NORMAL_UPDATE", text))
|
| 608 |
-
else:
|
| 609 |
-
# Normal pre-think streaming with token count
|
| 610 |
-
baseline_tokens_queue.put(("NORMAL_UPDATE", text, token_count))
|
| 611 |
-
|
| 612 |
def stop_generation_fn():
|
| 613 |
"""Stop the generation process"""
|
| 614 |
stop_generation.set()
|
| 615 |
return "Generation stopped"
|
| 616 |
|
| 617 |
-
def
|
| 618 |
-
"""
|
| 619 |
-
global
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
# Reset progress tracking for monotonic behavior
|
| 623 |
-
reset_progress_tracking()
|
| 624 |
-
|
| 625 |
-
baseline_think_tag_detected = False
|
| 626 |
-
baseline_progress_frozen = False
|
| 627 |
-
baseline_pre_think_content = ""
|
| 628 |
-
baseline_post_think_content = ""
|
| 629 |
-
stop_generation.clear()
|
| 630 |
-
|
| 631 |
-
# Clear all queues
|
| 632 |
-
while not baseline_progress_queue.empty():
|
| 633 |
-
baseline_progress_queue.get()
|
| 634 |
-
while not baseline_tokens_queue.empty():
|
| 635 |
-
baseline_tokens_queue.get()
|
| 636 |
-
|
| 637 |
-
return {
|
| 638 |
-
generation_status: "**Starting generation...**",
|
| 639 |
-
baseline_progress_bar: 0,
|
| 640 |
-
baseline_thinking_output: "",
|
| 641 |
-
baseline_answer_output: "",
|
| 642 |
-
baseline_tokens_count: "",
|
| 643 |
-
generate_btn: gr.Button("Generating...", variant="secondary", interactive=False),
|
| 644 |
-
stop_btn: gr.Button("Stop", variant="stop", interactive=True)
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
@spaces.GPU(duration=240)
|
| 648 |
-
def generate_with_updates(prompt):
|
| 649 |
-
"""Wrapper around generation function that handles real-time updates"""
|
| 650 |
-
# Check if model is loaded
|
| 651 |
-
if not model_loaded_successfully:
|
| 652 |
-
yield {
|
| 653 |
-
generation_status: f"**Cannot generate: {model_loading_error}**"
|
| 654 |
-
}
|
| 655 |
-
return
|
| 656 |
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
)
|
| 680 |
-
except Exception as e:
|
| 681 |
-
generation_error = str(e)
|
| 682 |
-
|
| 683 |
-
# Start the generation thread
|
| 684 |
-
generation_thread = threading.Thread(target=run_generation)
|
| 685 |
-
generation_thread.start()
|
| 686 |
-
|
| 687 |
-
# Monitor queues for updates while generation is running
|
| 688 |
-
baseline_current_text = ""
|
| 689 |
-
baseline_thinking_tokens = 0
|
| 690 |
-
baseline_last_progress = 0
|
| 691 |
-
|
| 692 |
-
while generation_thread.is_alive() or not baseline_tokens_queue.empty() or not baseline_progress_queue.empty():
|
| 693 |
-
updates = {}
|
| 694 |
-
|
| 695 |
-
# Check baseline tokens queue
|
| 696 |
-
try:
|
| 697 |
-
while not baseline_tokens_queue.empty():
|
| 698 |
-
token_update = baseline_tokens_queue.get_nowait()
|
| 699 |
-
|
| 700 |
-
if isinstance(token_update, tuple):
|
| 701 |
-
update_type = token_update[0]
|
| 702 |
-
|
| 703 |
-
if update_type == "THINK_TAG_DETECTED":
|
| 704 |
-
# </think> tag detected - split content
|
| 705 |
-
pre_content = token_update[1]
|
| 706 |
-
post_content = token_update[2]
|
| 707 |
-
thinking_token_count = token_update[3]
|
| 708 |
-
|
| 709 |
-
updates[baseline_thinking_output] = pre_content
|
| 710 |
-
updates[baseline_answer_output] = post_content
|
| 711 |
-
updates[baseline_progress_bar] = 100.0 # Freeze at 100%
|
| 712 |
-
|
| 713 |
-
# Use actual token count (before </think>)
|
| 714 |
-
baseline_thinking_tokens = thinking_token_count
|
| 715 |
-
updates[baseline_tokens_count] = f"{baseline_thinking_tokens}"
|
| 716 |
-
|
| 717 |
-
elif update_type == "POST_THINK_UPDATE":
|
| 718 |
-
# Update only the final answer
|
| 719 |
-
post_content = token_update[1]
|
| 720 |
-
updates[baseline_answer_output] = post_content
|
| 721 |
-
# Don't update token count - frozen at thinking tokens
|
| 722 |
-
|
| 723 |
-
elif update_type == "NORMAL_UPDATE":
|
| 724 |
-
# Normal text update
|
| 725 |
-
baseline_current_text = token_update[1]
|
| 726 |
-
if not baseline_think_tag_detected:
|
| 727 |
-
updates[baseline_thinking_output] = baseline_current_text
|
| 728 |
-
# Update thinking token count with actual token count if available
|
| 729 |
-
if len(token_update) > 2:
|
| 730 |
-
baseline_thinking_tokens = token_update[2]
|
| 731 |
-
else:
|
| 732 |
-
# Fallback to word count for backward compatibility
|
| 733 |
-
baseline_thinking_tokens = len(baseline_current_text.split())
|
| 734 |
-
updates[baseline_tokens_count] = f"{baseline_thinking_tokens}"
|
| 735 |
-
else:
|
| 736 |
-
# This shouldn't happen, but handle it gracefully
|
| 737 |
-
updates[baseline_answer_output] = baseline_current_text
|
| 738 |
-
else:
|
| 739 |
-
# Backward compatibility - treat as normal text
|
| 740 |
-
baseline_current_text = token_update
|
| 741 |
-
updates[baseline_thinking_output] = baseline_current_text
|
| 742 |
-
if not baseline_think_tag_detected:
|
| 743 |
-
baseline_thinking_tokens = len(baseline_current_text.split())
|
| 744 |
-
updates[baseline_tokens_count] = f"{baseline_thinking_tokens}"
|
| 745 |
-
|
| 746 |
-
except queue.Empty:
|
| 747 |
-
pass
|
| 748 |
-
|
| 749 |
-
# Check baseline progress queue
|
| 750 |
-
try:
|
| 751 |
-
while not baseline_progress_queue.empty():
|
| 752 |
-
baseline_last_progress = baseline_progress_queue.get_nowait()
|
| 753 |
-
updates[baseline_progress_bar] = baseline_last_progress
|
| 754 |
-
except queue.Empty:
|
| 755 |
-
pass
|
| 756 |
-
|
| 757 |
-
# If there are any updates, yield them
|
| 758 |
-
if updates:
|
| 759 |
-
yield updates
|
| 760 |
|
| 761 |
-
|
| 762 |
-
time.sleep(0.05)
|
| 763 |
-
|
| 764 |
-
# Final update
|
| 765 |
-
final_updates = {
|
| 766 |
-
generation_status: "**Generation complete!**" if not generation_error else f"**Error: {generation_error}**",
|
| 767 |
-
baseline_progress_bar: 100,
|
| 768 |
-
generate_btn: gr.Button("Generate", variant="primary", interactive=True),
|
| 769 |
-
stop_btn: gr.Button("Stop", variant="stop", interactive=True)
|
| 770 |
-
}
|
| 771 |
-
|
| 772 |
-
if not generation_error:
|
| 773 |
-
# Handle baseline final display
|
| 774 |
-
if baseline_think_tag_detected:
|
| 775 |
-
# Split result for final display
|
| 776 |
-
if "</think>" in baseline_result:
|
| 777 |
-
parts = baseline_result.split("</think>", 1)
|
| 778 |
-
final_updates[baseline_thinking_output] = parts[0] + "</think>"
|
| 779 |
-
final_updates[baseline_answer_output] = parts[1] if len(parts) > 1 else ""
|
| 780 |
-
# Use actual token count from generation
|
| 781 |
-
if baseline_thinking_tokens > 0:
|
| 782 |
-
final_updates[baseline_tokens_count] = f"{baseline_thinking_tokens}"
|
| 783 |
-
else:
|
| 784 |
-
# Fallback: use actual token count for thinking part
|
| 785 |
-
thinking_text = parts[0] + "</think>"
|
| 786 |
-
thinking_token_count = len(tokenizer.encode(thinking_text, add_special_tokens=False))
|
| 787 |
-
final_updates[baseline_tokens_count] = f"{thinking_token_count}"
|
| 788 |
-
else:
|
| 789 |
-
final_updates[baseline_thinking_output] = baseline_result
|
| 790 |
-
# Use actual token count
|
| 791 |
-
if baseline_thinking_tokens > 0:
|
| 792 |
-
final_updates[baseline_tokens_count] = f"{baseline_thinking_tokens}"
|
| 793 |
-
else:
|
| 794 |
-
total_token_count = len(tokenizer.encode(baseline_result, add_special_tokens=False))
|
| 795 |
-
final_updates[baseline_tokens_count] = f"{total_token_count}"
|
| 796 |
-
else:
|
| 797 |
-
final_updates[baseline_thinking_output] = baseline_result
|
| 798 |
-
# Use actual token count
|
| 799 |
-
if baseline_thinking_tokens > 0:
|
| 800 |
-
final_updates[baseline_tokens_count] = f"{baseline_thinking_tokens}"
|
| 801 |
-
else:
|
| 802 |
-
total_token_count = len(tokenizer.encode(baseline_result, add_special_tokens=False))
|
| 803 |
-
final_updates[baseline_tokens_count] = f"{total_token_count}"
|
| 804 |
-
|
| 805 |
-
yield final_updates
|
| 806 |
|
| 807 |
# Connect the buttons to the handlers
|
| 808 |
if model_loaded_successfully:
|
| 809 |
generate_btn.click(
|
| 810 |
-
|
| 811 |
inputs=[prompt],
|
| 812 |
outputs=[
|
| 813 |
generation_status,
|
|
|
|
| 367 |
# Load model automatically when script starts
|
| 368 |
initialize_app()
|
| 369 |
|
| 370 |
+
# Global function for resetting UI state
|
| 371 |
+
def reset_ui():
|
| 372 |
+
"""Reset the UI elements for a new generation"""
|
| 373 |
+
global baseline_think_tag_detected, baseline_progress_frozen
|
| 374 |
+
global baseline_pre_think_content, baseline_post_think_content
|
| 375 |
+
|
| 376 |
+
# Reset progress tracking for monotonic behavior
|
| 377 |
+
reset_progress_tracking()
|
| 378 |
+
|
| 379 |
+
baseline_think_tag_detected = False
|
| 380 |
+
baseline_progress_frozen = False
|
| 381 |
+
baseline_pre_think_content = ""
|
| 382 |
+
baseline_post_think_content = ""
|
| 383 |
+
|
| 384 |
+
return {
|
| 385 |
+
"status": "**Starting generation...**",
|
| 386 |
+
"progress": 0,
|
| 387 |
+
"thinking": "",
|
| 388 |
+
"answer": "",
|
| 389 |
+
"tokens": "",
|
| 390 |
+
"generate_btn_text": "Generating...",
|
| 391 |
+
"generate_btn_interactive": False,
|
| 392 |
+
"stop_btn_interactive": True
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
@spaces.GPU(duration=240)
|
| 396 |
+
def generate_with_updates(prompt, baseline_progress_queue, baseline_tokens_queue, stop_generation):
|
| 397 |
+
"""Wrapper around generation function that handles real-time updates"""
|
| 398 |
+
# Check if model is loaded
|
| 399 |
+
if not model_loaded_successfully:
|
| 400 |
+
yield {
|
| 401 |
+
"status": f"**Cannot generate: {model_loading_error}**"
|
| 402 |
+
}
|
| 403 |
+
return
|
| 404 |
+
|
| 405 |
+
# Use default values
|
| 406 |
+
max_tokens = 2048
|
| 407 |
+
|
| 408 |
+
# Reset UI first
|
| 409 |
+
yield reset_ui()
|
| 410 |
+
|
| 411 |
+
# Start generation in a separate thread to allow for UI updates
|
| 412 |
+
baseline_result = ""
|
| 413 |
+
baseline_token_count = 0
|
| 414 |
+
generation_error = None
|
| 415 |
+
generation_thread = None
|
| 416 |
+
|
| 417 |
+
def baseline_progress_updater(prog_value):
|
| 418 |
+
"""Update the baseline progress via the queue"""
|
| 419 |
+
baseline_progress_queue.put(prog_value)
|
| 420 |
+
|
| 421 |
+
def baseline_tokens_updater(text, token_count):
|
| 422 |
+
"""Update the baseline generated text via the queue"""
|
| 423 |
+
global baseline_think_tag_detected, baseline_progress_frozen, baseline_pre_think_content, baseline_post_think_content
|
| 424 |
+
|
| 425 |
+
# Check if </think> tag appears in the text
|
| 426 |
+
if not baseline_think_tag_detected and "</think>" in text:
|
| 427 |
+
baseline_think_tag_detected = True
|
| 428 |
+
baseline_progress_frozen = True
|
| 429 |
+
|
| 430 |
+
# Split content at </think>
|
| 431 |
+
parts = text.split("</think>", 1)
|
| 432 |
+
baseline_pre_think_content = parts[0] + "</think>"
|
| 433 |
+
baseline_post_think_content = parts[1] if len(parts) > 1 else ""
|
| 434 |
+
|
| 435 |
+
# Signal content split with token count
|
| 436 |
+
baseline_tokens_queue.put(("THINK_TAG_DETECTED", baseline_pre_think_content, baseline_post_think_content, token_count))
|
| 437 |
+
elif baseline_think_tag_detected:
|
| 438 |
+
# Update post-think content
|
| 439 |
+
if "</think>" in text:
|
| 440 |
+
parts = text.split("</think>", 1)
|
| 441 |
+
baseline_post_think_content = parts[1] if len(parts) > 1 else ""
|
| 442 |
+
baseline_tokens_queue.put(("POST_THINK_UPDATE", baseline_post_think_content))
|
| 443 |
+
else:
|
| 444 |
+
baseline_tokens_queue.put(("NORMAL_UPDATE", text))
|
| 445 |
+
else:
|
| 446 |
+
# Normal pre-think streaming with token count
|
| 447 |
+
baseline_tokens_queue.put(("NORMAL_UPDATE", text, token_count))
|
| 448 |
+
|
| 449 |
+
def run_generation():
|
| 450 |
+
nonlocal baseline_result, baseline_token_count, generation_error
|
| 451 |
+
try:
|
| 452 |
+
# Baseline-only generation
|
| 453 |
+
baseline_result, baseline_token_count = generate_baseline_only(
|
| 454 |
+
prompt=prompt,
|
| 455 |
+
max_new_tokens=max_tokens,
|
| 456 |
+
baseline_progress_callback=baseline_progress_updater,
|
| 457 |
+
baseline_tokens_callback=baseline_tokens_updater,
|
| 458 |
+
stop_event=stop_generation
|
| 459 |
+
)
|
| 460 |
+
except Exception as e:
|
| 461 |
+
generation_error = str(e)
|
| 462 |
+
|
| 463 |
+
# Start the generation thread
|
| 464 |
+
generation_thread = threading.Thread(target=run_generation)
|
| 465 |
+
generation_thread.start()
|
| 466 |
+
|
| 467 |
+
# Monitor queues for updates while generation is running
|
| 468 |
+
baseline_current_text = ""
|
| 469 |
+
baseline_thinking_tokens = 0
|
| 470 |
+
baseline_last_progress = 0
|
| 471 |
+
|
| 472 |
+
while generation_thread.is_alive() or not baseline_tokens_queue.empty() or not baseline_progress_queue.empty():
|
| 473 |
+
updates = {}
|
| 474 |
+
|
| 475 |
+
# Check baseline tokens queue
|
| 476 |
+
try:
|
| 477 |
+
while not baseline_tokens_queue.empty():
|
| 478 |
+
token_update = baseline_tokens_queue.get_nowait()
|
| 479 |
+
|
| 480 |
+
if isinstance(token_update, tuple):
|
| 481 |
+
update_type = token_update[0]
|
| 482 |
+
|
| 483 |
+
if update_type == "THINK_TAG_DETECTED":
|
| 484 |
+
# </think> tag detected - split content
|
| 485 |
+
pre_content = token_update[1]
|
| 486 |
+
post_content = token_update[2]
|
| 487 |
+
thinking_token_count = token_update[3]
|
| 488 |
+
|
| 489 |
+
updates["thinking"] = pre_content
|
| 490 |
+
updates["answer"] = post_content
|
| 491 |
+
updates["progress"] = 100.0 # Freeze at 100%
|
| 492 |
+
|
| 493 |
+
# Use actual token count (before </think>)
|
| 494 |
+
baseline_thinking_tokens = thinking_token_count
|
| 495 |
+
updates["tokens"] = f"{baseline_thinking_tokens}"
|
| 496 |
+
|
| 497 |
+
elif update_type == "POST_THINK_UPDATE":
|
| 498 |
+
# Update only the final answer
|
| 499 |
+
post_content = token_update[1]
|
| 500 |
+
updates["answer"] = post_content
|
| 501 |
+
# Don't update token count - frozen at thinking tokens
|
| 502 |
+
|
| 503 |
+
elif update_type == "NORMAL_UPDATE":
|
| 504 |
+
# Normal text update
|
| 505 |
+
baseline_current_text = token_update[1]
|
| 506 |
+
if not baseline_think_tag_detected:
|
| 507 |
+
updates["thinking"] = baseline_current_text
|
| 508 |
+
# Update thinking token count with actual token count if available
|
| 509 |
+
if len(token_update) > 2:
|
| 510 |
+
baseline_thinking_tokens = token_update[2]
|
| 511 |
+
else:
|
| 512 |
+
# Fallback to word count for backward compatibility
|
| 513 |
+
baseline_thinking_tokens = len(baseline_current_text.split())
|
| 514 |
+
updates["tokens"] = f"{baseline_thinking_tokens}"
|
| 515 |
+
else:
|
| 516 |
+
# This shouldn't happen, but handle it gracefully
|
| 517 |
+
updates["answer"] = baseline_current_text
|
| 518 |
+
else:
|
| 519 |
+
# Backward compatibility - treat as normal text
|
| 520 |
+
baseline_current_text = token_update
|
| 521 |
+
updates["thinking"] = baseline_current_text
|
| 522 |
+
if not baseline_think_tag_detected:
|
| 523 |
+
baseline_thinking_tokens = len(baseline_current_text.split())
|
| 524 |
+
updates["tokens"] = f"{baseline_thinking_tokens}"
|
| 525 |
+
|
| 526 |
+
except queue.Empty:
|
| 527 |
+
pass
|
| 528 |
+
|
| 529 |
+
# Check baseline progress queue
|
| 530 |
+
try:
|
| 531 |
+
while not baseline_progress_queue.empty():
|
| 532 |
+
baseline_last_progress = baseline_progress_queue.get_nowait()
|
| 533 |
+
updates["progress"] = baseline_last_progress
|
| 534 |
+
except queue.Empty:
|
| 535 |
+
pass
|
| 536 |
+
|
| 537 |
+
# If there are any updates, yield them
|
| 538 |
+
if updates:
|
| 539 |
+
yield updates
|
| 540 |
+
|
| 541 |
+
# Sleep briefly to prevent excessive CPU usage
|
| 542 |
+
time.sleep(0.05)
|
| 543 |
+
|
| 544 |
+
# Final update
|
| 545 |
+
final_updates = {
|
| 546 |
+
"status": "**Generation complete!**" if not generation_error else f"**Error: {generation_error}**",
|
| 547 |
+
"progress": 100,
|
| 548 |
+
"generate_btn_text": "Generate",
|
| 549 |
+
"generate_btn_interactive": True,
|
| 550 |
+
"stop_btn_interactive": True
|
| 551 |
+
}
|
| 552 |
+
|
| 553 |
+
if not generation_error:
|
| 554 |
+
# Handle baseline final display
|
| 555 |
+
if baseline_think_tag_detected:
|
| 556 |
+
# Split result for final display
|
| 557 |
+
if "</think>" in baseline_result:
|
| 558 |
+
parts = baseline_result.split("</think>", 1)
|
| 559 |
+
final_updates["thinking"] = parts[0] + "</think>"
|
| 560 |
+
final_updates["answer"] = parts[1] if len(parts) > 1 else ""
|
| 561 |
+
# Use actual token count from generation
|
| 562 |
+
if baseline_thinking_tokens > 0:
|
| 563 |
+
final_updates["tokens"] = f"{baseline_thinking_tokens}"
|
| 564 |
+
else:
|
| 565 |
+
# Fallback: use actual token count for thinking part
|
| 566 |
+
thinking_text = parts[0] + "</think>"
|
| 567 |
+
thinking_token_count = len(tokenizer.encode(thinking_text, add_special_tokens=False))
|
| 568 |
+
final_updates["tokens"] = f"{thinking_token_count}"
|
| 569 |
+
else:
|
| 570 |
+
final_updates["thinking"] = baseline_result
|
| 571 |
+
# Use actual token count
|
| 572 |
+
if baseline_thinking_tokens > 0:
|
| 573 |
+
final_updates["tokens"] = f"{baseline_thinking_tokens}"
|
| 574 |
+
else:
|
| 575 |
+
total_token_count = len(tokenizer.encode(baseline_result, add_special_tokens=False))
|
| 576 |
+
final_updates["tokens"] = f"{total_token_count}"
|
| 577 |
+
else:
|
| 578 |
+
final_updates["thinking"] = baseline_result
|
| 579 |
+
# Use actual token count
|
| 580 |
+
if baseline_thinking_tokens > 0:
|
| 581 |
+
final_updates["tokens"] = f"{baseline_thinking_tokens}"
|
| 582 |
+
else:
|
| 583 |
+
total_token_count = len(tokenizer.encode(baseline_result, add_special_tokens=False))
|
| 584 |
+
final_updates["tokens"] = f"{total_token_count}"
|
| 585 |
+
|
| 586 |
+
yield final_updates
|
| 587 |
+
|
| 588 |
# Create the Gradio interface
|
| 589 |
def create_interface():
|
| 590 |
# Create custom theme with light green progress bars
|
|
|
|
| 795 |
baseline_tokens_queue = queue.Queue()
|
| 796 |
stop_generation = threading.Event()
|
| 797 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
def stop_generation_fn():
|
| 799 |
"""Stop the generation process"""
|
| 800 |
stop_generation.set()
|
| 801 |
return "Generation stopped"
|
| 802 |
|
| 803 |
+
def generate_wrapper(prompt):
|
| 804 |
+
"""Wrapper to adapt the global generate_with_updates function for Gradio"""
|
| 805 |
+
# Process updates from the global function and map to UI components
|
| 806 |
+
for update_dict in generate_with_updates(prompt, baseline_progress_queue, baseline_tokens_queue, stop_generation):
|
| 807 |
+
gradio_updates = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 808 |
|
| 809 |
+
# Map the string keys to actual Gradio components
|
| 810 |
+
if "status" in update_dict:
|
| 811 |
+
gradio_updates[generation_status] = update_dict["status"]
|
| 812 |
+
if "progress" in update_dict:
|
| 813 |
+
gradio_updates[baseline_progress_bar] = update_dict["progress"]
|
| 814 |
+
if "thinking" in update_dict:
|
| 815 |
+
gradio_updates[baseline_thinking_output] = update_dict["thinking"]
|
| 816 |
+
if "answer" in update_dict:
|
| 817 |
+
gradio_updates[baseline_answer_output] = update_dict["answer"]
|
| 818 |
+
if "tokens" in update_dict:
|
| 819 |
+
gradio_updates[baseline_tokens_count] = update_dict["tokens"]
|
| 820 |
+
if "generate_btn_text" in update_dict:
|
| 821 |
+
gradio_updates[generate_btn] = gr.Button(
|
| 822 |
+
update_dict["generate_btn_text"],
|
| 823 |
+
variant="secondary" if "Generating" in update_dict["generate_btn_text"] else "primary",
|
| 824 |
+
interactive=update_dict.get("generate_btn_interactive", True)
|
| 825 |
+
)
|
| 826 |
+
if "stop_btn_interactive" in update_dict:
|
| 827 |
+
gradio_updates[stop_btn] = gr.Button(
|
| 828 |
+
"Stop",
|
| 829 |
+
variant="stop",
|
| 830 |
+
interactive=update_dict["stop_btn_interactive"]
|
| 831 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 832 |
|
| 833 |
+
yield gradio_updates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 834 |
|
| 835 |
# Connect the buttons to the handlers
|
| 836 |
if model_loaded_successfully:
|
| 837 |
generate_btn.click(
|
| 838 |
+
generate_wrapper,
|
| 839 |
inputs=[prompt],
|
| 840 |
outputs=[
|
| 841 |
generation_status,
|