Spaces:
Sleeping
Sleeping
File size: 7,188 Bytes
db10255 3f04313 db10255 3f04313 db10255 3f04313 db10255 3f04313 db10255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
---
title: HandyHome OCR API
emoji: π
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
license: mit
---
# HandyHome OCR Extraction API
Philippine ID and Document OCR Extraction Service using PaddleOCR
## π― Features
### Supported Documents
#### Philippine Government IDs
- **National ID** - 19-digit ID number, full name, birth date
- **Driver's License** - License number, full name, address, birth date
- **UMID** - CRN, full name, birth date
- **SSS ID** - SSS number, full name, birth date
- **PRC ID** - PRC number, profession, full name, validity
- **Postal ID** - PRN, full name, address, birth date
- **PhilHealth ID** - ID number, full name, birth date, sex, address
#### Clearances & Certificates
- **NBI Clearance** - ID number, full name, birth date
- **Police Clearance** - ID number, full name, address, birth date, status
- **TESDA Certificate** - Registry number, full name, qualification, date issued
#### Passport
- **Philippine Passport** - Passport number, surname, given names, birth date, nationality
### Additional Features
- **Document Analysis** - Automatic document type identification
- **Document Tampering Detection** - Analyze multiple documents for tampering using Error Level Analysis (ELA) and metadata inspection
## π Quick Start
### API Endpoints
All extraction endpoints accept POST requests with the following format:
```json
{
"document_url": "https://example.com/document.jpg"
}
```
#### Philippine ID Endpoints
- `POST /api/extract-national-id` - Extract National ID
- `POST /api/extract-drivers-license` - Extract Driver's License
- `POST /api/extract-prc` - Extract PRC ID
- `POST /api/extract-umid` - Extract UMID
- `POST /api/extract-sss` - Extract SSS ID
- `POST /api/extract-passport` - Extract Passport
- `POST /api/extract-postal` - Extract Postal ID
- `POST /api/extract-phic` - Extract PhilHealth ID
#### Clearance Endpoints
- `POST /api/extract-nbi` - Extract NBI Clearance
- `POST /api/extract-police-clearance` - Extract Police Clearance
- `POST /api/extract-tesda` - Extract TESDA Certificate
#### Analysis Endpoints
- `POST /api/analyze-document` - Identify document type
- `POST /api/analyze-documents` - Analyze multiple documents for tampering (max 3)
#### Utility Endpoints
- `GET /health` - Health check
- `GET /` - API documentation
- `GET /api/routes` - List all routes
## π Usage Examples
### Python Example
```python
import requests
# Extract National ID
response = requests.post(
'https://YOUR-SPACE.hf.space/api/extract-national-id',
json={'document_url': 'https://example.com/national_id.jpg'}
)
result = response.json()
print(result)
# Expected output:
# {
# "success": true,
# "id_number": "1234-5678-9012-3456",
# "full_name": "Juan Dela Cruz",
# "birth_date": "1990-01-15"
# }
# Analyze multiple documents for tampering
response = requests.post(
'https://YOUR-SPACE.hf.space/api/analyze-documents',
json={'image_urls': [
'https://example.com/id1.jpg',
'https://example.com/id2.jpg'
]}
)
tampering_result = response.json()
print(tampering_result)
# Expected output:
# {
# "success": true,
# "total_documents": 2,
# "results": [
# {
# "document_id": "doc_1",
# "tampering_results": {"tampered": "False", "brightness_ratio": 0.015},
# "metadata_results": {"result": "success", "message": "..."}
# },
# ...
# ]
# }
```
### cURL Example
```bash
curl -X POST https://YOUR-SPACE.hf.space/api/extract-national-id \
-H "Content-Type: application/json" \
-d '{"document_url": "https://example.com/national_id.jpg"}'
```
### JavaScript Example
```javascript
const response = await fetch('https://YOUR-SPACE.hf.space/api/extract-national-id', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
document_url: 'https://example.com/national_id.jpg'
})
});
const result = await response.json();
console.log(result);
```
## π οΈ Technical Details
### Technology Stack
- **OCR Engine**: PaddleOCR 2.7+
- **Framework**: Flask + Gunicorn
- **Image Processing**: OpenCV, Pillow
- **Runtime**: Python 3.9
### Performance
- Average response time: 2-5 seconds per document
- Supports images up to 10MB
- Concurrent request handling with Gunicorn workers
### Resource Requirements
- RAM: 4GB minimum
- Storage: 2GB (includes PaddleOCR models)
- CPU: 2 cores recommended
## π¦ Deployment to Hugging Face Spaces
### Step 1: Create a New Space
1. Go to [Hugging Face Spaces](https://huggingface.co/new-space)
2. Enter space name: `handyhome-ocr-api` (or your preferred name)
3. Select **Docker** as SDK
4. Choose visibility: Public or Private
5. Click "Create Space"
### Step 2: Upload Files
Upload all files from this directory to your Space:
- `app.py`
- `requirements.txt`
- `Dockerfile`
- `README.md`
- All `extract_*.py` scripts
- `analyze_document.py`
### Step 3: Configure Space Settings
1. In your Space settings, set:
- **SDK**: Docker
- **Port**: 7860
- **Sleep time**: 48 hours (optional)
2. The Space will automatically build and deploy
### Step 4: Wait for Build
- Initial build takes 5-10 minutes
- PaddleOCR models are downloaded during build
- Check build logs for any errors
### Step 5: Test Your API
Once deployed, test the health endpoint:
```bash
curl https://YOUR-USERNAME-handyhome-ocr-api.hf.space/health
```
## π§ Local Development
### Setup
```bash
# Install dependencies
pip install -r requirements.txt
# Run Flask development server
python app.py
```
### Testing
```bash
# Test with a document URL
curl -X POST http://localhost:7860/api/extract-national-id \
-H "Content-Type: application/json" \
-d '{"document_url": "YOUR_IMAGE_URL"}'
```
## π Response Format
### Successful Response
```json
{
"success": true,
"id_number": "1234-5678-9012-3456",
"full_name": "Juan Dela Cruz",
"birth_date": "1990-01-15",
...additional fields...
}
```
### Error Response
```json
{
"success": false,
"error": "Error description",
"stderr": "Detailed error message"
}
```
## β οΈ Limitations
- Requires clear, readable document images
- Works best with well-lit, high-resolution scans
- OCR accuracy depends on image quality
- Some fields may be null if not detected
- Processing time varies based on image size
## π Security Considerations
- Images are processed in memory and not stored permanently
- All processing happens server-side
- Sensitive data should be transmitted over HTTPS
- Consider rate limiting for production use
## π License
MIT License - See LICENSE file for details
## π€ Contributing
Contributions welcome! Please submit issues and pull requests.
## π Support
For issues and questions:
- Open an issue on GitHub
- Contact: [Your contact information]
---
Built with β€οΈ using PaddleOCR and Flask
|