File size: 23,558 Bytes
db10255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7908d00
db10255
 
 
 
 
7908d00
db10255
 
 
 
 
 
 
 
 
 
 
2b089f9
db10255
 
2b089f9
 
 
db10255
2b089f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db10255
2b089f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db10255
 
6916300
db10255
2b089f9
 
 
 
db10255
 
 
 
 
 
 
 
 
 
7908d00
db10255
2b089f9
 
 
 
 
 
 
 
db10255
 
 
2b089f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db10255
 
 
 
2b089f9
db10255
 
 
 
 
 
 
 
 
 
 
 
 
7908d00
db10255
2b089f9
 
 
 
 
 
 
 
db10255
2b089f9
db10255
 
2b089f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db10255
 
2b089f9
 
db10255
 
2b089f9
db10255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import sys, json, os, glob, requests
import re
import time
import shutil
from contextlib import redirect_stdout, redirect_stderr

# Immediately redirect all output to stderr except for our final JSON
original_stdout = sys.stdout
sys.stdout = sys.stderr

# Suppress all PaddleOCR output
os.environ['PADDLEOCR_LOG_LEVEL'] = 'ERROR'
os.environ['QT_QPA_PLATFORM'] = 'offscreen'
os.environ['DISPLAY'] = ':99'

# Import PaddleOCR after setting environment variables
from paddleocr import PaddleOCR

def download_image(url, output_path='temp_image.jpg'):
    # Remove any existing temp file
    if os.path.exists(output_path):
        os.remove(output_path)
    
    # Add cache-busting parameters
    timestamp = int(time.time())
    if '?' in url:
        url += f'&t={timestamp}'
    else:
        url += f'?t={timestamp}'
    
    # Add headers to prevent caching
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
        'Cache-Control': 'no-cache, no-store, must-revalidate',
        'Pragma': 'no-cache',
        'Expires': '0'
    }
    
    response = requests.get(url, headers=headers, timeout=30)
    response.raise_for_status()
    image_data = response.content
    
    
    # Save the image and verify it's the right one
    with open(output_path, 'wb') as f:
        f.write(image_data)
    
    
    return output_path

# OCR Function to extract NBI ID NO, Name, Birth Date, and LIT
def extract_nbi_id(lines):
    nbi_id = None
    full_name = None
    birth_date = None
    lit = None  # LIT field (Last Issued To or similar)
    
    # Clean lines - convert to strings and strip
    cleaned_lines = [str(line).strip() if isinstance(line, str) else str(line).strip() for line in lines]
    
    # First pass: Look for NBI ID pattern in all lines (prioritize exact matches)
    # This helps catch IDs that might be on lines without labels
    for i, line in enumerate(cleaned_lines):
        line_upper = line.upper().strip()
        line_clean = line.strip()
        
        # Look for NBI ID pattern with hyphen first (most reliable)
        if not nbi_id:
            hyphen_pattern = r'\b([A-Z0-9]{8,12}-[A-Z0-9]{8,12})\b'
            match = re.search(hyphen_pattern, line_clean)
            if match:
                candidate = match.group(1)
                # Validate length and that it's not part of an address
                if 17 <= len(candidate) <= 25:
                    # Check that line doesn't have too many words (NBI IDs are usually standalone)
                    line_words = line_clean.split()
                    if len(line_words) <= 3:  # Usually 1-2 words max (the ID itself)
                        # Additional validation: should have mix of letters and numbers
                        has_letters = bool(re.search(r'[A-Z]', candidate))
                        has_numbers = bool(re.search(r'[0-9]', candidate))
                        if has_letters and has_numbers:
                            nbi_id = candidate
                            print(f"DEBUG: Found NBI ID (first pass, hyphen): {nbi_id}", file=sys.stderr)
                            break
    
    # Second pass: Extract other fields and refine ID if needed
    for i, line in enumerate(cleaned_lines):
        line_upper = line.upper().strip()
        line_clean = line.strip()
        
        # Extract NBI ID Number (if not found in first pass)
        if not nbi_id:
            # Look for "NBI ID NO:" pattern (various formats)
            if ("NBI ID NO:" in line_upper or "NBIIDNO" in line_upper or "NBI ID NO" in line_upper or 
                "NBI ID NUMBER" in line_upper or "NBIID NUMBER" in line_upper):
                # Extract the ID after the colon
                if ":" in line:
                    parts = line.split(':', 1)
                    if len(parts) > 1:
                        id_candidate = parts[1].strip()
                        # Clean up the ID (remove extra spaces, ensure proper format)
                        id_candidate = re.sub(r'\s+', '', id_candidate)  # Remove spaces
                        if len(id_candidate) > 5:  # Valid ID should be longer
                            nbi_id = id_candidate
                            print(f"DEBUG: Found NBI ID (same line): {nbi_id}", file=sys.stderr)
                            continue
                
                # Also check if the next line contains the ID (in case it's on a separate line)
                if i < len(cleaned_lines) - 1:
                    for j in range(1, min(3, len(cleaned_lines) - i)):
                        next_line = cleaned_lines[i + j].strip()
                        # Skip if it's clearly not an ID (too short, contains labels)
                        if len(next_line) < 5 or any(label in next_line.upper() for label in ['NAME', 'DATE', 'BIRTH', 'CLEARANCE']):
                            continue
                        # Check if it looks like an NBI ID (alphanumeric, reasonable length)
                        if re.match(r'^[A-Z0-9-]{15,25}$', next_line.replace(' ', '')):
                            nbi_id = next_line.replace(' ', '')
                            print(f"DEBUG: Found NBI ID (next line): {nbi_id}", file=sys.stderr)
                            break
                    if nbi_id:
                        continue
            
            # Look for NBI ID pattern: alphanumeric with one hyphen
            # Format examples: B450JRLR0B-RC248667, HGUR87H38D-U47204A873
            # First part: 8-12 chars, hyphen, second part: 8-12 chars
            # Total length: 17-25 characters (including hyphen)
            
            # Priority 1: Pattern with hyphen (most common format)
            # Look for pattern like B450JRLR0B-RC248667
            hyphen_pattern = r'\b([A-Z0-9]{8,12}-[A-Z0-9]{8,12})\b'
            match = re.search(hyphen_pattern, line_clean)
            if match:
                candidate = match.group(1)
                # Validate: should be 17-25 chars total
                if 17 <= len(candidate) <= 25:
                    # Make sure it's not matching address parts or other text
                    # Also check that the line doesn't have too many words (NBI IDs are usually standalone)
                    line_words = line_clean.split()
                    # Additional validation: should have mix of letters and numbers
                    has_letters = bool(re.search(r'[A-Z]', candidate))
                    has_numbers = bool(re.search(r'[0-9]', candidate))
                    if (has_letters and has_numbers and
                        not any(word in candidate.upper() for word in ['STREET', 'ST', 'AVENUE', 'AVE', 'BRGY', 'BARANGAY', 'CITY', 'PHASE', 'DOMINGO', 'CAINTA', 'RIZAL']) and
                        len(line_words) <= 3):  # NBI ID is usually on its own line or with 1-2 other words
                        nbi_id = candidate
                        print(f"DEBUG: Found NBI ID (hyphen pattern): {nbi_id}", file=sys.stderr)
                        continue
            
            # Priority 2: Pattern with space instead of hyphen
            space_pattern = r'\b([A-Z0-9]{8,12})\s+([A-Z0-9]{8,12})\b'
            match = re.search(space_pattern, line_clean)
            if match:
                part1, part2 = match.groups()
                candidate = f"{part1}-{part2}"
                if 17 <= len(candidate) <= 25:
                    has_letters = bool(re.search(r'[A-Z]', candidate))
                    has_numbers = bool(re.search(r'[0-9]', candidate))
                    if (has_letters and has_numbers and
                        not any(word in candidate.upper() for word in ['STREET', 'ST', 'AVENUE', 'AVE', 'BRGY', 'BARANGAY', 'CITY', 'PHASE', 'DOMINGO', 'CAINTA', 'RIZAL'])):
                        nbi_id = candidate
                        print(f"DEBUG: Found NBI ID (space pattern): {nbi_id}", file=sys.stderr)
                        continue
            
            # Priority 3: Pattern without hyphen/space (all together)
            # Only if we haven't found one yet and it's a reasonable length
            no_hyphen_pattern = r'\b([A-Z0-9]{17,25})\b'
            match = re.search(no_hyphen_pattern, line_clean)
            if match:
                candidate = match.group(1)
                # Make sure it doesn't contain common address words and has both letters and numbers
                has_letters = bool(re.search(r'[A-Z]', candidate))
                has_numbers = bool(re.search(r'[0-9]', candidate))
                if (has_letters and has_numbers and
                    not any(word in candidate.upper() for word in ['STREET', 'ST', 'AVENUE', 'AVE', 'BRGY', 'BARANGAY', 'CITY', 'PHASE', 'ADDRESS', 'DOMINGO', 'CAINTA', 'RIZAL', 'ATRSTORUARPHASEABRGY'])):
                    # Try to split it intelligently (usually split in the middle)
                    mid = len(candidate) // 2
                    # Try splitting at various points
                    for split_point in range(mid-2, mid+3):
                        if 8 <= split_point <= len(candidate) - 8:
                            part1 = candidate[:split_point]
                            part2 = candidate[split_point:]
                            if 8 <= len(part1) <= 12 and 8 <= len(part2) <= 12:
                                nbi_id = f"{part1}-{part2}"
                                print(f"DEBUG: Found NBI ID (no hyphen, split): {nbi_id}", file=sys.stderr)
                                break
                    if nbi_id:
                        continue
        
        # Extract Full Name - look for name patterns after "NAME" label
        # Also handle cases where name might be on the same line or next lines
        if not full_name:
            # Check if line contains "NAME" label
            if "NAME" in line_upper and ("NBI" not in line_upper or "ID" not in line_upper):
                # First, check if name is on the same line after colon
                if ":" in line:
                    parts = line.split(':', 1)
                    if len(parts) > 1:
                        name_part = parts[1].strip()
                        if re.search(r'[A-Za-z]{2,}', name_part) and len(name_part) > 2:
                            full_name = name_part
                            print(f"DEBUG: Found full name (same line): {full_name}", file=sys.stderr)
                            continue
                
                # Check next few lines for name value
                for j in range(1, min(5, len(cleaned_lines) - i)):
                    next_line = cleaned_lines[i + j].strip()
                    next_upper = next_line.upper()
                    # Skip if it's another label or ID number
                    if any(label in next_upper for label in ['NBI', 'ID', 'NO', 'DATE', 'BIRTH', 'CLEARANCE', 'REPUBLIC', 'PHILIPPINES', 'NATIONAL']):
                        continue
                    # Check if it looks like a name (has letters, may have commas, not all numbers)
                    if re.search(r'[A-Za-z]{2,}', next_line) and not re.match(r'^\d+$', next_line) and len(next_line) > 2:
                        # Additional check: make sure it's not just a single word that's too short
                        if len(next_line.split()) >= 1 and len(next_line) > 3:
                            full_name = next_line
                            print(f"DEBUG: Found full name: {full_name}", file=sys.stderr)
                            break
        
        # Extract Birth Date - look for date patterns after "DATE OF BIRTH" or "BIRTH DATE" label
        if not birth_date:
            if ("DATE OF BIRTH" in line_upper or "BIRTH DATE" in line_upper or "BIRTHDATE" in line_upper or 
                ("DATE" in line_upper and "BIRTH" in line_upper)):
                # First, check if date is on the same line after colon
                if ":" in line:
                    parts = line.split(':', 1)
                    if len(parts) > 1:
                        date_part = parts[1].strip()
                        if (re.search(r'(JANUARY|FEBRUARY|MARCH|APRIL|MAY|JUNE|JULY|AUGUST|SEPTEMBER|OCTOBER|NOVEMBER|DECEMBER|JAN|FEB|MAR|APR|JUN|JUL|AUG|SEP|OCT|NOV|DEC)', date_part.upper()) or
                            re.search(r'\d{1,2}[/-]\d{1,2}[/-]\d{4}', date_part) or
                            re.search(r'\d{1,2}\s+[A-Z]{3}\s+\d{4}', date_part)):
                            birth_date = date_part
                            print(f"DEBUG: Found birth date (same line): {birth_date}", file=sys.stderr)
                            continue
                
                # Check next few lines for date value
                for j in range(1, min(5, len(cleaned_lines) - i)):
                    next_line = cleaned_lines[i + j].strip()
                    next_upper = next_line.upper()
                    # Skip if it's another label
                    if any(label in next_upper for label in ['NBI', 'ID', 'NO', 'NAME', 'CLEARANCE', 'REPUBLIC', 'PHILIPPINES', 'NATIONAL']):
                        continue
                    # Check if it looks like a date (contains month name or date pattern)
                    if (re.search(r'(JANUARY|FEBRUARY|MARCH|APRIL|MAY|JUNE|JULY|AUGUST|SEPTEMBER|OCTOBER|NOVEMBER|DECEMBER|JAN|FEB|MAR|APR|JUN|JUL|AUG|SEP|OCT|NOV|DEC)', next_upper) or
                        re.search(r'\d{1,2}[/-]\d{1,2}[/-]\d{4}', next_line) or
                        re.search(r'\d{1,2}\s+[A-Z]{3}\s+\d{4}', next_line)):
                        birth_date = next_line
                        print(f"DEBUG: Found birth date: {birth_date}", file=sys.stderr)
                        break
        
        # Extract LIT field - look for "LIT" label or pattern
        if not lit:
            # Look for "LIT" label (could be "LIT:", "LIT", or part of another label)
            if "LIT" in line_upper and ("ID" not in line_upper or "NBI" not in line_upper):
                # Check if LIT value is on the same line after colon or space
                if ":" in line:
                    parts = line.split(':', 1)
                    if len(parts) > 1:
                        lit_part = parts[1].strip()
                        if len(lit_part) > 0:
                            lit = lit_part
                            print(f"DEBUG: Found LIT (same line): {lit}", file=sys.stderr)
                            continue
                # Check next few lines for LIT value
                for j in range(1, min(4, len(cleaned_lines) - i)):
                    next_line = cleaned_lines[i + j].strip()
                    next_upper = next_line.upper()
                    # Skip if it's another label
                    if any(label in next_upper for label in ['NBI', 'ID', 'NO', 'NAME', 'DATE', 'BIRTH', 'CLEARANCE', 'REPUBLIC', 'PHILIPPINES', 'NATIONAL', 'VALID', 'UNTIL']):
                        continue
                    # Check if it looks like a valid LIT value (could be date, name, or other text)
                    if len(next_line) > 0:
                        lit = next_line
                        print(f"DEBUG: Found LIT: {lit}", file=sys.stderr)
                        break
    
    return {
        'clearance_type': 'nbi',
        'id_number': nbi_id,
        'full_name': full_name,
        'birth_date': birth_date,
        'lit': lit,
        'success': nbi_id is not None or full_name is not None
    }

def extract_ocr_lines_simple(image_path):
    
    # Try with different PaddleOCR settings
    with redirect_stdout(sys.stderr), redirect_stderr(sys.stderr):
        ocr = PaddleOCR(
            use_doc_orientation_classify=True,  # Enable orientation detection
            use_doc_unwarping=True,            # Enable document unwarping
            use_textline_orientation=True,     # Enable text line orientation
            lang='en'                          # Set language to English
        )
        try:
            results = ocr.predict(image_path)
        except Exception as e:
            print(f"DEBUG: predict() failed: {e}, trying ocr()", file=sys.stderr)
            if hasattr(ocr, 'ocr'):
                results = ocr.ocr(image_path)
            else:
                results = None
    
    all_text = []
    try:
        # Handle both old format (list) and new format (OCRResult object)
        if results and isinstance(results, list) and len(results) > 0:
            first_item = results[0]
            item_type_name = type(first_item).__name__
            is_ocr_result = 'OCRResult' in item_type_name or 'ocr_result' in str(type(first_item)).lower()
            
            if is_ocr_result:
                print(f"DEBUG: Detected OCRResult object format (type: {item_type_name})", file=sys.stderr)
                # Access OCRResult as dictionary
                try:
                    if hasattr(first_item, 'keys'):
                        ocr_dict = dict(first_item)
                        # Look for rec_texts key
                        if 'rec_texts' in ocr_dict:
                            rec_texts = ocr_dict['rec_texts']
                            if isinstance(rec_texts, list):
                                all_text = [str(t) for t in rec_texts if t]
                                print(f"DEBUG: Extracted {len(all_text)} text lines from rec_texts", file=sys.stderr)
                except Exception as e:
                    print(f"DEBUG: Error accessing OCRResult: {e}", file=sys.stderr)
            else:
                # Old format - list of lists
                lines = results[0] if results and isinstance(results[0], list) else results
                for item in lines:
                    if isinstance(item, (list, tuple)) and len(item) >= 2:
                        meta = item[1]
                        if isinstance(meta, (list, tuple)) and len(meta) >= 1:
                            all_text.append(str(meta[0]))
    except Exception as e:
        print(f"DEBUG: Error processing OCR results: {str(e)}", file=sys.stderr)
    
    return extract_nbi_id(all_text) if all_text else {'clearance_type': 'nbi', 'id_number': None, 'full_name': None, 'birth_date': None, 'lit': None, 'success': False}

def extract_ocr_lines(image_path):
    # Check if file exists and has content
    if not os.path.exists(image_path):
        return {'clearance_type': 'nbi', 'id_number': None, 'full_name': None, 'birth_date': None, 'success': False}
    
    # Ensure output directory exists
    os.makedirs("output", exist_ok=True)
    
    # Clear previous output files
    for old_file in glob.glob("output/*"):
        os.remove(old_file)
    
    with redirect_stdout(sys.stderr), redirect_stderr(sys.stderr):
        ocr = PaddleOCR(
            use_doc_orientation_classify=False, 
            use_doc_unwarping=False, 
            use_textline_orientation=False,
            lang='en'
        )
        try:
            results = ocr.predict(image_path)
        except Exception as e:
            print(f"DEBUG: predict() failed: {e}, trying ocr()", file=sys.stderr)
            if hasattr(ocr, 'ocr'):
                results = ocr.ocr(image_path)
            else:
                results = None
    
    # Process OCR results - handle both old format (list) and new format (OCRResult object)
    all_text = []
    try:
        # Handle both old format (list) and new format (OCRResult object)
        if results and isinstance(results, list) and len(results) > 0:
            first_item = results[0]
            item_type_name = type(first_item).__name__
            is_ocr_result = 'OCRResult' in item_type_name or 'ocr_result' in str(type(first_item)).lower()
            
            if is_ocr_result:
                print(f"DEBUG: Detected OCRResult object format (type: {item_type_name})", file=sys.stderr)
                # Access OCRResult as dictionary
                try:
                    if hasattr(first_item, 'keys'):
                        ocr_dict = dict(first_item)
                        # Look for rec_texts key
                        if 'rec_texts' in ocr_dict:
                            rec_texts = ocr_dict['rec_texts']
                            if isinstance(rec_texts, list):
                                all_text = [str(t) for t in rec_texts if t]
                                print(f"DEBUG: Extracted {len(all_text)} text lines from rec_texts", file=sys.stderr)
                except Exception as e:
                    print(f"DEBUG: Error accessing OCRResult: {e}", file=sys.stderr)
            else:
                # Old format - list of lists
                lines = results[0] if results and isinstance(results[0], list) else results
                for item in lines:
                    if isinstance(item, (list, tuple)) and len(item) >= 2:
                        meta = item[1]
                        if isinstance(meta, (list, tuple)) and len(meta) >= 1:
                            all_text.append(str(meta[0]))
    except Exception as e:
        print(f"DEBUG: Error processing OCR results: {str(e)}", file=sys.stderr)
        import traceback
        print(f"DEBUG: Traceback: {traceback.format_exc()}", file=sys.stderr)
    
    print(f"DEBUG: Extracted text lines: {all_text}", file=sys.stderr)
    return extract_nbi_id(all_text) if all_text else {'clearance_type': 'nbi', 'id_number': None, 'full_name': None, 'birth_date': None, 'lit': None, 'success': False}
    
# Main 
if len(sys.argv) < 2:
    sys.stdout = original_stdout
    print(json.dumps({"success": False, "error": "No image URL provided"}))
    sys.exit(1)

image_url = sys.argv[1]
print(f"DEBUG: Processing NBI image URL: {image_url}", file=sys.stderr)

try:
    image_path = download_image(image_url, f'temp_image.jpg')
    print(f"DEBUG: Image downloaded to: {image_path}", file=sys.stderr)

    # Try the original OCR method first
    ocr_results = extract_ocr_lines(image_path)
    print(f"DEBUG: OCR results from extract_ocr_lines: {ocr_results}", file=sys.stderr)
    
    # If original method fails, try simple method
    if not ocr_results['success']:
        print("DEBUG: Original method failed, trying simple method", file=sys.stderr)
        ocr_results = extract_ocr_lines_simple(image_path)
        print(f"DEBUG: OCR results from extract_ocr_lines_simple: {ocr_results}", file=sys.stderr)
    
    # Clean up the temporary file
    if os.path.exists(image_path):
        os.remove(image_path)
    
    # Create the response object
    response = {
        "success": ocr_results['success'], 
        "ocr_results": ocr_results
    }
    
    # Restore stdout and print only the JSON response
    sys.stdout = original_stdout
    sys.stdout.write(json.dumps(response))
    sys.stdout.flush()
        
except Exception as e:
    # Restore stdout for error JSON
    sys.stdout = original_stdout
    sys.stdout.write(json.dumps({"success": False, "error": str(e)}))
    sys.stdout.flush()
    sys.exit(1)
finally:
    # Clean up
    try:
        if os.path.exists('temp_image.jpg'):
            os.remove('temp_image.jpg')
    except:
        pass