Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from datetime import datetime
|
|
| 6 |
from datasets import load_dataset
|
| 7 |
import pandas as pd
|
| 8 |
|
| 9 |
-
# Global state
|
| 10 |
class TrainingState:
|
| 11 |
def __init__(self):
|
| 12 |
self.status = "idle"
|
|
@@ -21,245 +21,165 @@ class TrainingState:
|
|
| 21 |
|
| 22 |
def load_dataset(self):
|
| 23 |
try:
|
| 24 |
-
self.logs.append(
|
| 25 |
dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
|
| 26 |
self.dataset_loaded = True
|
| 27 |
-
self.dataset_info = f"β
Dataset loaded
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
sample_data = dataset['train'].select(range(5))
|
| 31 |
-
self.dataset_sample = pd.DataFrame(sample_data)
|
| 32 |
-
|
| 33 |
-
self.logs.append(f"π Dataset loaded: {len(dataset['train'])} Pashto examples")
|
| 34 |
return True
|
| 35 |
except Exception as e:
|
| 36 |
-
self.logs.append(f"β
|
| 37 |
-
self.dataset_info = f"Error
|
| 38 |
return False
|
| 39 |
|
| 40 |
-
def start_training(self,
|
| 41 |
self.status = "training"
|
| 42 |
self.progress = 0
|
| 43 |
self.logs = [f"ποΈ Training started at {datetime.now().strftime('%H:%M:%S')}"]
|
| 44 |
-
self.logs.append(f"π
|
| 45 |
self.start_time = time.time()
|
| 46 |
-
|
| 47 |
-
def start_finetuning(self,
|
| 48 |
self.status = "fine-tuning"
|
| 49 |
self.progress = 0
|
| 50 |
self.logs = [f"π― Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
|
| 51 |
-
self.logs.append(f"π
|
| 52 |
self.start_time = time.time()
|
| 53 |
-
|
| 54 |
def update_progress(self, progress):
|
| 55 |
self.progress = min(100, max(0, progress))
|
| 56 |
-
if progress >= 100
|
| 57 |
self.complete_process()
|
| 58 |
-
|
| 59 |
-
def add_log(self,
|
| 60 |
-
self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {
|
| 61 |
-
if len(self.logs) > 15:
|
| 62 |
self.logs.pop(0)
|
| 63 |
-
|
| 64 |
def complete_process(self):
|
| 65 |
elapsed = time.time() - self.start_time
|
| 66 |
-
self.add_log(f"π {self.status.capitalize()} completed in {elapsed:.1f}
|
| 67 |
self.status = "idle"
|
| 68 |
self.progress = 100
|
| 69 |
-
|
| 70 |
def get_status(self):
|
| 71 |
-
|
| 72 |
"idle": "β
Ready",
|
| 73 |
-
"training": "ποΈ Training
|
| 74 |
-
"fine-tuning": "π― Fine-tuning
|
| 75 |
}
|
| 76 |
-
return
|
| 77 |
|
| 78 |
-
# Create global state
|
| 79 |
state = TrainingState()
|
| 80 |
|
| 81 |
-
def test_model(
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
f"
|
| 88 |
-
f"
|
| 89 |
-
f"
|
| 90 |
-
f"
|
| 91 |
-
f"Generated continuation: {input_text}... [simulated output]",
|
| 92 |
-
f"Pashto analysis: Text contains {len(input_text.split())} words",
|
| 93 |
-
f"π Detected language: Pashto (confidence: 95%)"
|
| 94 |
]
|
| 95 |
-
return random.choice(
|
| 96 |
|
| 97 |
def simulate_process(duration, process_type, data_size):
|
| 98 |
-
"""Simulate long-running training/fine-tuning process"""
|
| 99 |
if process_type == "train":
|
| 100 |
state.start_training(data_size)
|
| 101 |
else:
|
| 102 |
state.start_finetuning(data_size)
|
| 103 |
-
|
| 104 |
steps = 10
|
| 105 |
for i in range(steps + 1):
|
| 106 |
time.sleep(duration / steps)
|
| 107 |
-
|
| 108 |
-
state.update_progress(progress)
|
| 109 |
-
|
| 110 |
-
# Add simulated log messages
|
| 111 |
if i % 3 == 0:
|
| 112 |
-
|
| 113 |
-
f"
|
| 114 |
-
f"Loss: {random.uniform(0.1, 1.0):.
|
| 115 |
-
f"
|
| 116 |
-
f"
|
| 117 |
-
|
| 118 |
-
f"GPU utilization: {random.randint(70, 95)}%"
|
| 119 |
-
]
|
| 120 |
-
state.add_log(random.choice(messages))
|
| 121 |
-
|
| 122 |
state.complete_process()
|
| 123 |
|
| 124 |
-
def train_model(
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
return "Please provide training data.", ""
|
| 128 |
-
|
| 129 |
-
# Validate dataset requirements
|
| 130 |
if not state.dataset_loaded:
|
| 131 |
-
return "
|
| 132 |
-
|
| 133 |
-
data_size = len(dataset_text)
|
| 134 |
if state.status != "idle":
|
| 135 |
-
return "
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
threading.Thread(
|
| 139 |
-
target=simulate_process,
|
| 140 |
-
args=(15, "train", data_size),
|
| 141 |
-
daemon=True
|
| 142 |
-
).start()
|
| 143 |
-
|
| 144 |
-
return "Training started successfully! Check status in the Status tab.", ""
|
| 145 |
|
| 146 |
-
def finetune_model(
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
return "Please provide fine-tuning data.", ""
|
| 150 |
-
|
| 151 |
-
# Validate dataset requirements
|
| 152 |
if not state.dataset_loaded:
|
| 153 |
-
return "
|
| 154 |
-
|
| 155 |
-
data_size = len(dataset_text)
|
| 156 |
if state.status != "idle":
|
| 157 |
-
return "
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
threading.Thread(
|
| 161 |
-
target=simulate_process,
|
| 162 |
-
args=(10, "fine-tune", data_size),
|
| 163 |
-
daemon=True
|
| 164 |
-
).start()
|
| 165 |
-
|
| 166 |
-
return "Fine-tuning started successfully! Check status in the Status tab.", ""
|
| 167 |
|
| 168 |
def load_hf_dataset():
|
| 169 |
-
|
| 170 |
-
success = state.load_dataset()
|
| 171 |
-
if success:
|
| 172 |
-
return {
|
| 173 |
-
dataset_status: state.dataset_info,
|
| 174 |
-
dataset_preview: state.dataset_sample,
|
| 175 |
-
dataset_btn: "Dataset Loaded β
"
|
| 176 |
-
}
|
| 177 |
return {
|
| 178 |
dataset_status: state.dataset_info,
|
| 179 |
-
dataset_preview: pd.DataFrame(),
|
| 180 |
-
dataset_btn: "
|
| 181 |
}
|
| 182 |
|
| 183 |
def get_current_status():
|
| 184 |
-
"""Get current system status"""
|
| 185 |
-
status_text = state.get_status()
|
| 186 |
-
|
| 187 |
-
# Add progress information
|
| 188 |
-
if state.status != "idle":
|
| 189 |
-
status_text += f" - {state.progress}% complete"
|
| 190 |
-
|
| 191 |
-
# Format logs
|
| 192 |
-
logs = "\n".join(state.logs) if state.logs else "No logs available"
|
| 193 |
-
|
| 194 |
return {
|
| 195 |
-
status_box:
|
| 196 |
-
progress_bar: state.progress / 100,
|
| 197 |
-
log_output: logs
|
| 198 |
}
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
gr.Markdown("
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
gr.Markdown("### Load Pashto Dataset")
|
| 207 |
-
gr.Markdown("Dataset: [tasal9/ZamAi-Pashto-Datasets-V2](https://huggingface.co/datasets/tasal9/ZamAi-Pashto-Datasets-V2)")
|
| 208 |
with gr.Row():
|
| 209 |
-
dataset_btn = gr.Button("Load Dataset"
|
| 210 |
-
dataset_status = gr.Textbox(label="
|
| 211 |
-
dataset_preview = gr.DataFrame(label="
|
| 212 |
dataset_btn.click(load_hf_dataset, outputs=[dataset_status, dataset_preview, dataset_btn])
|
| 213 |
-
|
| 214 |
-
with gr.Tab("Test Model"):
|
| 215 |
-
gr.Markdown("### Test Model with Sample Text")
|
| 216 |
with gr.Row():
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
test_output = gr.Textbox(label="Model Output", lines=4, interactive=False)
|
| 221 |
test_btn.click(test_model, inputs=test_input, outputs=test_output)
|
| 222 |
-
|
| 223 |
-
with gr.Tab("Train
|
| 224 |
-
gr.
|
| 225 |
-
gr.
|
| 226 |
-
|
| 227 |
-
with gr.Column():
|
| 228 |
-
train_input = gr.Textbox(label="Training Data", lines=8, placeholder="Paste additional training data here...")
|
| 229 |
-
train_btn = gr.Button("Start Training", variant="primary")
|
| 230 |
-
train_output = gr.Textbox(label="Training Status", lines=2, interactive=False)
|
| 231 |
train_btn.click(train_model, inputs=train_input, outputs=train_output)
|
| 232 |
-
|
| 233 |
-
with gr.Tab("Fine-tune
|
| 234 |
-
gr.
|
| 235 |
-
gr.
|
| 236 |
-
|
| 237 |
-
with gr.Column():
|
| 238 |
-
finetune_input = gr.Textbox(label="Fine-tuning Data", lines=8, placeholder="Paste fine-tuning dataset here...")
|
| 239 |
-
finetune_btn = gr.Button("Start Fine-tuning", variant="primary")
|
| 240 |
-
finetune_output = gr.Textbox(label="Fine-tuning Status", lines=2, interactive=False)
|
| 241 |
finetune_btn.click(finetune_model, inputs=finetune_input, outputs=finetune_output)
|
| 242 |
-
|
| 243 |
-
with gr.Tab("Status"):
|
| 244 |
-
gr.Markdown("### System Status")
|
| 245 |
with gr.Row():
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# Auto-refresh component
|
| 255 |
-
auto_refresh_component = gr.Interval(5, interactive=False)
|
| 256 |
-
|
| 257 |
-
with gr.Blocks() as demo:
|
| 258 |
-
out = gr.Textbox()
|
| 259 |
-
def update():
|
| 260 |
-
return "Auto refreshed."
|
| 261 |
|
| 262 |
-
with gr.Blocks() as demo:
|
| 263 |
-
out = gr.Textbox()
|
| 264 |
if __name__ == "__main__":
|
| 265 |
demo.launch(share=True)
|
|
|
|
| 6 |
from datasets import load_dataset
|
| 7 |
import pandas as pd
|
| 8 |
|
| 9 |
+
# Global state
|
| 10 |
class TrainingState:
|
| 11 |
def __init__(self):
|
| 12 |
self.status = "idle"
|
|
|
|
| 21 |
|
| 22 |
def load_dataset(self):
|
| 23 |
try:
|
| 24 |
+
self.logs.append("β³ Loading dataset: tasal9/ZamAi-Pashto-Datasets-V2")
|
| 25 |
dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
|
| 26 |
self.dataset_loaded = True
|
| 27 |
+
self.dataset_info = f"β
Dataset loaded!\nName: ZamAi-Pashto-Datasets-V2\nSize: {len(dataset['train'])} examples"
|
| 28 |
+
self.dataset_sample = pd.DataFrame(dataset['train'].select(range(5)))
|
| 29 |
+
self.logs.append(f"π {len(dataset['train'])} Pashto examples loaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
return True
|
| 31 |
except Exception as e:
|
| 32 |
+
self.logs.append(f"β Error loading dataset: {str(e)}")
|
| 33 |
+
self.dataset_info = f"Error: {str(e)}"
|
| 34 |
return False
|
| 35 |
|
| 36 |
+
def start_training(self, size):
|
| 37 |
self.status = "training"
|
| 38 |
self.progress = 0
|
| 39 |
self.logs = [f"ποΈ Training started at {datetime.now().strftime('%H:%M:%S')}"]
|
| 40 |
+
self.logs.append(f"π Data size: {size} characters")
|
| 41 |
self.start_time = time.time()
|
| 42 |
+
|
| 43 |
+
def start_finetuning(self, size):
|
| 44 |
self.status = "fine-tuning"
|
| 45 |
self.progress = 0
|
| 46 |
self.logs = [f"π― Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
|
| 47 |
+
self.logs.append(f"π Data size: {size} characters")
|
| 48 |
self.start_time = time.time()
|
| 49 |
+
|
| 50 |
def update_progress(self, progress):
|
| 51 |
self.progress = min(100, max(0, progress))
|
| 52 |
+
if progress >= 100:
|
| 53 |
self.complete_process()
|
| 54 |
+
|
| 55 |
+
def add_log(self, msg):
|
| 56 |
+
self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
|
| 57 |
+
if len(self.logs) > 15:
|
| 58 |
self.logs.pop(0)
|
| 59 |
+
|
| 60 |
def complete_process(self):
|
| 61 |
elapsed = time.time() - self.start_time
|
| 62 |
+
self.add_log(f"π {self.status.capitalize()} completed in {elapsed:.1f}s")
|
| 63 |
self.status = "idle"
|
| 64 |
self.progress = 100
|
| 65 |
+
|
| 66 |
def get_status(self):
|
| 67 |
+
m = {
|
| 68 |
"idle": "β
Ready",
|
| 69 |
+
"training": "ποΈ Training",
|
| 70 |
+
"fine-tuning": "π― Fine-tuning"
|
| 71 |
}
|
| 72 |
+
return m.get(self.status, "β Unknown") + (f" - {self.progress}%" if self.status != "idle" else "")
|
| 73 |
|
|
|
|
| 74 |
state = TrainingState()
|
| 75 |
|
| 76 |
+
def test_model(text):
|
| 77 |
+
if not text.strip():
|
| 78 |
+
return "β Enter text to test."
|
| 79 |
+
options = [
|
| 80 |
+
f"Processed: '{text}'",
|
| 81 |
+
f"Model response to: {text}",
|
| 82 |
+
f"Pashto analysis: {len(text)} characters",
|
| 83 |
+
f"β
Got it: {text}",
|
| 84 |
+
f"Generated: {text}... [simulated]",
|
| 85 |
+
f"π Words: {len(text.split())}"
|
|
|
|
|
|
|
|
|
|
| 86 |
]
|
| 87 |
+
return random.choice(options)
|
| 88 |
|
| 89 |
def simulate_process(duration, process_type, data_size):
|
|
|
|
| 90 |
if process_type == "train":
|
| 91 |
state.start_training(data_size)
|
| 92 |
else:
|
| 93 |
state.start_finetuning(data_size)
|
|
|
|
| 94 |
steps = 10
|
| 95 |
for i in range(steps + 1):
|
| 96 |
time.sleep(duration / steps)
|
| 97 |
+
state.update_progress(int((i / steps) * 100))
|
|
|
|
|
|
|
|
|
|
| 98 |
if i % 3 == 0:
|
| 99 |
+
state.add_log(random.choice([
|
| 100 |
+
f"Batch {i}/{steps}",
|
| 101 |
+
f"Loss: {random.uniform(0.1, 1.0):.3f}",
|
| 102 |
+
f"LR: {random.uniform(1e-5, 1e-3):.6f}",
|
| 103 |
+
f"GPU: {random.randint(60, 95)}% (sim)",
|
| 104 |
+
]))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
state.complete_process()
|
| 106 |
|
| 107 |
+
def train_model(text):
|
| 108 |
+
if not text.strip():
|
| 109 |
+
return "β Add training data.", ""
|
|
|
|
|
|
|
|
|
|
| 110 |
if not state.dataset_loaded:
|
| 111 |
+
return "β Load dataset first.", ""
|
|
|
|
|
|
|
| 112 |
if state.status != "idle":
|
| 113 |
+
return "β³ Wait for current process.", ""
|
| 114 |
+
threading.Thread(target=simulate_process, args=(15, "train", len(text)), daemon=True).start()
|
| 115 |
+
return "β
Training started", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
def finetune_model(text):
|
| 118 |
+
if not text.strip():
|
| 119 |
+
return "β Add fine-tuning data.", ""
|
|
|
|
|
|
|
|
|
|
| 120 |
if not state.dataset_loaded:
|
| 121 |
+
return "β Load dataset first.", ""
|
|
|
|
|
|
|
| 122 |
if state.status != "idle":
|
| 123 |
+
return "β³ Wait for current process.", ""
|
| 124 |
+
threading.Thread(target=simulate_process, args=(10, "fine-tune", len(text)), daemon=True).start()
|
| 125 |
+
return "β
Fine-tuning started", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
def load_hf_dataset():
|
| 128 |
+
ok = state.load_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
return {
|
| 130 |
dataset_status: state.dataset_info,
|
| 131 |
+
dataset_preview: state.dataset_sample if ok else pd.DataFrame(),
|
| 132 |
+
dataset_btn: "β
Loaded" if ok else "Retry"
|
| 133 |
}
|
| 134 |
|
| 135 |
def get_current_status():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
return {
|
| 137 |
+
status_box: state.get_status(),
|
| 138 |
+
progress_bar: state.progress / 100,
|
| 139 |
+
log_output: "\n".join(state.logs) if state.logs else "No logs yet"
|
| 140 |
}
|
| 141 |
|
| 142 |
+
with gr.Blocks(title="Pashto Base Bloom Trainer", theme="soft") as demo:
|
| 143 |
+
gr.Markdown("# πΈ Pashto-Base-Bloom Trainer")
|
| 144 |
+
gr.Markdown("Train & fine-tune Pashto model: `tasal9/pashto-base-bloom`")
|
| 145 |
+
|
| 146 |
+
with gr.Tab("π Dataset"):
|
| 147 |
+
gr.Markdown("### Load Dataset from Hugging Face")
|
|
|
|
|
|
|
| 148 |
with gr.Row():
|
| 149 |
+
dataset_btn = gr.Button("Load Dataset")
|
| 150 |
+
dataset_status = gr.Textbox(label="Status", lines=2, interactive=False)
|
| 151 |
+
dataset_preview = gr.DataFrame(label="Sample Preview", interactive=False)
|
| 152 |
dataset_btn.click(load_hf_dataset, outputs=[dataset_status, dataset_preview, dataset_btn])
|
| 153 |
+
|
| 154 |
+
with gr.Tab("π§ͺ Test Model"):
|
|
|
|
| 155 |
with gr.Row():
|
| 156 |
+
test_input = gr.Textbox(label="Input", lines=3)
|
| 157 |
+
test_btn = gr.Button("Test")
|
| 158 |
+
test_output = gr.Textbox(label="Output", lines=3, interactive=False)
|
|
|
|
| 159 |
test_btn.click(test_model, inputs=test_input, outputs=test_output)
|
| 160 |
+
|
| 161 |
+
with gr.Tab("ποΈ Train"):
|
| 162 |
+
train_input = gr.Textbox(label="Training Data", lines=6)
|
| 163 |
+
train_btn = gr.Button("Start Training")
|
| 164 |
+
train_output = gr.Textbox(label="Status", lines=2, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
train_btn.click(train_model, inputs=train_input, outputs=train_output)
|
| 166 |
+
|
| 167 |
+
with gr.Tab("π― Fine-tune"):
|
| 168 |
+
finetune_input = gr.Textbox(label="Fine-tuning Data", lines=6)
|
| 169 |
+
finetune_btn = gr.Button("Start Fine-tuning")
|
| 170 |
+
finetune_output = gr.Textbox(label="Status", lines=2, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
finetune_btn.click(finetune_model, inputs=finetune_input, outputs=finetune_output)
|
| 172 |
+
|
| 173 |
+
with gr.Tab("π Status"):
|
|
|
|
| 174 |
with gr.Row():
|
| 175 |
+
status_box = gr.Textbox(label="Current Status", interactive=False)
|
| 176 |
+
progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
|
| 177 |
+
log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
|
| 178 |
+
refresh_btn = gr.Button("π Refresh")
|
| 179 |
+
auto_refresh = gr.Checkbox(label="Auto-refresh every 5s", value=True)
|
| 180 |
+
refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
|
| 181 |
+
auto_refresh_component = gr.Interval(5, visible=True)
|
| 182 |
+
auto_refresh_component.click(get_current_status, outputs=[status_box, progress_bar, log_output], every=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
|
|
|
|
|
|
| 184 |
if __name__ == "__main__":
|
| 185 |
demo.launch(share=True)
|