Spaces:
Runtime error
Runtime error
fix(model): use correct params
Browse files
dalle_mini/configuration_bart.py
CHANGED
|
@@ -21,16 +21,11 @@ from transformers.utils import logging
|
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
| 24 |
-
BART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 25 |
-
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json",
|
| 26 |
-
# See all BART models at https://huggingface.co/models?filter=bart
|
| 27 |
-
}
|
| 28 |
|
| 29 |
-
|
| 30 |
-
class BartConfig(PretrainedConfig):
|
| 31 |
r"""
|
| 32 |
-
This is the configuration class to store the configuration of a
|
| 33 |
-
instantiate a
|
| 34 |
configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
|
| 35 |
<https://huggingface.co/facebook/bart-large>`__ architecture.
|
| 36 |
|
|
@@ -39,7 +34,7 @@ class BartConfig(PretrainedConfig):
|
|
| 39 |
|
| 40 |
|
| 41 |
Args:
|
| 42 |
-
|
| 43 |
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
| 44 |
:obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
|
| 45 |
:class:`~transformers.TFBartModel`.
|
|
@@ -90,30 +85,18 @@ class BartConfig(PretrainedConfig):
|
|
| 90 |
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
|
| 91 |
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
|
| 92 |
:obj:`eos_token_id`.
|
| 93 |
-
|
| 94 |
-
Example::
|
| 95 |
-
|
| 96 |
-
>>> from transformers import BartModel, BartConfig
|
| 97 |
-
|
| 98 |
-
>>> # Initializing a BART facebook/bart-large style configuration
|
| 99 |
-
>>> configuration = BartConfig()
|
| 100 |
-
|
| 101 |
-
>>> # Initializing a model from the facebook/bart-large style configuration
|
| 102 |
-
>>> model = BartModel(configuration)
|
| 103 |
-
|
| 104 |
-
>>> # Accessing the model configuration
|
| 105 |
-
>>> configuration = model.config
|
| 106 |
"""
|
| 107 |
-
model_type = "
|
| 108 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 109 |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
| 110 |
|
| 111 |
def __init__(
|
| 112 |
self,
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
encoder_layers=12,
|
| 118 |
encoder_ffn_dim=4096,
|
| 119 |
encoder_attention_heads=16,
|
|
@@ -133,19 +116,16 @@ class BartConfig(PretrainedConfig):
|
|
| 133 |
gradient_checkpointing=False,
|
| 134 |
use_cache=True,
|
| 135 |
num_labels=3,
|
| 136 |
-
pad_token_id=1,
|
| 137 |
-
bos_token_id=0,
|
| 138 |
-
eos_token_id=2,
|
| 139 |
is_encoder_decoder=True,
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
tie_word_embeddings=False, # don't tie for scaling reasons
|
| 143 |
**kwargs,
|
| 144 |
):
|
| 145 |
-
self.
|
| 146 |
-
self.
|
| 147 |
-
self.
|
| 148 |
-
self.
|
|
|
|
| 149 |
self.d_model = d_model
|
| 150 |
self.encoder_ffn_dim = encoder_ffn_dim
|
| 151 |
self.encoder_layers = encoder_layers
|
|
@@ -165,12 +145,15 @@ class BartConfig(PretrainedConfig):
|
|
| 165 |
self.num_hidden_layers = encoder_layers
|
| 166 |
self.gradient_checkpointing = gradient_checkpointing
|
| 167 |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
super().__init__(
|
| 170 |
num_labels=num_labels,
|
| 171 |
-
pad_token_id=
|
| 172 |
-
bos_token_id=
|
| 173 |
-
eos_token_id=
|
| 174 |
is_encoder_decoder=is_encoder_decoder,
|
| 175 |
decoder_start_token_id=decoder_start_token_id,
|
| 176 |
forced_eos_token_id=forced_eos_token_id,
|
|
|
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
class DalleBartConfig(PretrainedConfig):
|
|
|
|
| 26 |
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a `DalleBartModel`. It is used to
|
| 28 |
+
instantiate a DalleBart model according to the specified arguments, defining the model architecture. Instantiating a
|
| 29 |
configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
|
| 30 |
<https://huggingface.co/facebook/bart-large>`__ architecture.
|
| 31 |
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
Args:
|
| 37 |
+
encoder_vocab_size (:obj:`int`, `optional`, defaults to 50265):
|
| 38 |
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
| 39 |
:obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
|
| 40 |
:class:`~transformers.TFBartModel`.
|
|
|
|
| 85 |
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
|
| 86 |
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
|
| 87 |
:obj:`eos_token_id`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
"""
|
| 89 |
+
model_type = "dallebart"
|
| 90 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 91 |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
| 92 |
|
| 93 |
def __init__(
|
| 94 |
self,
|
| 95 |
+
normalize_text=False,
|
| 96 |
+
encoder_vocab_size=50264,
|
| 97 |
+
image_vocab_size=16384, # encoded image token space
|
| 98 |
+
image_length=256, # number of encoded tokens
|
| 99 |
+
max_text_length=64, # max number of text tokens
|
| 100 |
encoder_layers=12,
|
| 101 |
encoder_ffn_dim=4096,
|
| 102 |
encoder_attention_heads=16,
|
|
|
|
| 116 |
gradient_checkpointing=False,
|
| 117 |
use_cache=True,
|
| 118 |
num_labels=3,
|
|
|
|
|
|
|
|
|
|
| 119 |
is_encoder_decoder=True,
|
| 120 |
+
forced_eos_token_id=None,
|
| 121 |
+
tie_word_embeddings=False, # don't tie for scaling reasons and due to different modalities and sizes
|
|
|
|
| 122 |
**kwargs,
|
| 123 |
):
|
| 124 |
+
self.normalize_text = normalize_text
|
| 125 |
+
self.encoder_vocab_size = encoder_vocab_size
|
| 126 |
+
self.decoder_vocab_size = image_vocab_size
|
| 127 |
+
self.image_length = image_length
|
| 128 |
+
self.max_text_length = max_text_length
|
| 129 |
self.d_model = d_model
|
| 130 |
self.encoder_ffn_dim = encoder_ffn_dim
|
| 131 |
self.encoder_layers = encoder_layers
|
|
|
|
| 145 |
self.num_hidden_layers = encoder_layers
|
| 146 |
self.gradient_checkpointing = gradient_checkpointing
|
| 147 |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
| 148 |
+
self.decoder_start_token_id = image_vocab_size, # BOS appended to vocab
|
| 149 |
+
self.min_length = image_length + 1
|
| 150 |
+
self.max_length = image_length + 1
|
| 151 |
|
| 152 |
super().__init__(
|
| 153 |
num_labels=num_labels,
|
| 154 |
+
pad_token_id=image_vocab_size + 1, # needed to avoid errors during generation (converted to jnp.array)
|
| 155 |
+
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
| 156 |
+
eos_token_id=image_vocab_size + 1,
|
| 157 |
is_encoder_decoder=is_encoder_decoder,
|
| 158 |
decoder_start_token_id=decoder_start_token_id,
|
| 159 |
forced_eos_token_id=forced_eos_token_id,
|
dalle_mini/modeling_bart_flax.py
CHANGED
|
@@ -93,7 +93,7 @@ class FlaxBartAttention(nn.Module):
|
|
| 93 |
|
| 94 |
if self.causal:
|
| 95 |
self.causal_mask = make_causal_mask(
|
| 96 |
-
jnp.ones((1,
|
| 97 |
)
|
| 98 |
|
| 99 |
def _split_heads(self, hidden_states):
|
|
@@ -431,11 +431,10 @@ class FlaxBartEncoder(nn.Module):
|
|
| 431 |
|
| 432 |
embed_dim = self.config.d_model
|
| 433 |
self.padding_idx = self.config.pad_token_id
|
| 434 |
-
self.max_source_positions = self.config.max_position_embeddings
|
| 435 |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
| 436 |
|
| 437 |
self.embed_tokens = nn.Embed(
|
| 438 |
-
self.config.
|
| 439 |
embed_dim,
|
| 440 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 441 |
)
|
|
@@ -444,7 +443,7 @@ class FlaxBartEncoder(nn.Module):
|
|
| 444 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 445 |
self.offset = 0
|
| 446 |
self.embed_positions = nn.Embed(
|
| 447 |
-
self.config.
|
| 448 |
embed_dim,
|
| 449 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 450 |
)
|
|
@@ -489,11 +488,10 @@ class FlaxBartDecoder(nn.Module):
|
|
| 489 |
|
| 490 |
embed_dim = self.config.d_model
|
| 491 |
self.padding_idx = self.config.pad_token_id
|
| 492 |
-
self.max_target_positions = self.config.max_position_embeddings
|
| 493 |
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
| 494 |
|
| 495 |
self.embed_tokens = nn.Embed(
|
| 496 |
-
self.config.
|
| 497 |
embed_dim,
|
| 498 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 499 |
)
|
|
@@ -502,7 +500,7 @@ class FlaxBartDecoder(nn.Module):
|
|
| 502 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 503 |
self.offset = 0
|
| 504 |
self.embed_positions = nn.Embed(
|
| 505 |
-
self.config.
|
| 506 |
embed_dim,
|
| 507 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 508 |
)
|
|
@@ -802,11 +800,14 @@ class FlaxBartForConditionalGenerationModule(nn.Module):
|
|
| 802 |
def setup(self):
|
| 803 |
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
| 804 |
self.lm_head = nn.Dense(
|
| 805 |
-
self.config.
|
| 806 |
use_bias=False,
|
| 807 |
dtype=self.dtype,
|
| 808 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 809 |
)
|
|
|
|
|
|
|
|
|
|
| 810 |
|
| 811 |
def _get_encoder_module(self):
|
| 812 |
return self.model.encoder
|
|
|
|
| 93 |
|
| 94 |
if self.causal:
|
| 95 |
self.causal_mask = make_causal_mask(
|
| 96 |
+
jnp.ones((1, embed_dim), dtype="bool"), dtype="bool"
|
| 97 |
)
|
| 98 |
|
| 99 |
def _split_heads(self, hidden_states):
|
|
|
|
| 431 |
|
| 432 |
embed_dim = self.config.d_model
|
| 433 |
self.padding_idx = self.config.pad_token_id
|
|
|
|
| 434 |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
| 435 |
|
| 436 |
self.embed_tokens = nn.Embed(
|
| 437 |
+
self.config.encoder_vocab_size,
|
| 438 |
embed_dim,
|
| 439 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 440 |
)
|
|
|
|
| 443 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 444 |
self.offset = 0
|
| 445 |
self.embed_positions = nn.Embed(
|
| 446 |
+
self.config.max_text_length + self.offset,
|
| 447 |
embed_dim,
|
| 448 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 449 |
)
|
|
|
|
| 488 |
|
| 489 |
embed_dim = self.config.d_model
|
| 490 |
self.padding_idx = self.config.pad_token_id
|
|
|
|
| 491 |
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
| 492 |
|
| 493 |
self.embed_tokens = nn.Embed(
|
| 494 |
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
| 495 |
embed_dim,
|
| 496 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 497 |
)
|
|
|
|
| 500 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
| 501 |
self.offset = 0
|
| 502 |
self.embed_positions = nn.Embed(
|
| 503 |
+
self.config.image_length + 1 + self.offset, # image length + 1 for BOS
|
| 504 |
embed_dim,
|
| 505 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 506 |
)
|
|
|
|
| 800 |
def setup(self):
|
| 801 |
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
| 802 |
self.lm_head = nn.Dense(
|
| 803 |
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
| 804 |
use_bias=False,
|
| 805 |
dtype=self.dtype,
|
| 806 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
| 807 |
)
|
| 808 |
+
self.final_logits_bias = self.param(
|
| 809 |
+
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
| 810 |
+
)
|
| 811 |
|
| 812 |
def _get_encoder_module(self):
|
| 813 |
return self.model.encoder
|