Spaces:
Build error
Build error
File size: 10,197 Bytes
4d588ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import torch
import argparse
import os
import numpy as np
from tqdm import tqdm
import json
import time
import random
import glob
import warnings
from scipy.stats import entropy
from sklearn.neighbors import NearestNeighbors
import sys
sys.path.append("..")
from utils import read_ply
N_POINTS = 2000
random.seed(1234)
PC_ROOT = "../data/pc_cad"
RECORD_FILE = "../data/train_val_test_split.json"
def distChamfer(a, b):
x, y = a, b
bs, num_points, points_dim = x.size()
xx = torch.bmm(x, x.transpose(2, 1))
yy = torch.bmm(y, y.transpose(2, 1))
zz = torch.bmm(x, y.transpose(2, 1))
diag_ind = torch.arange(0, num_points).to(a).long()
rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx)
ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy)
P = (rx.transpose(2, 1) + ry - 2 * zz)
return P.min(1)[0], P.min(2)[0]
def _pairwise_CD(sample_pcs, ref_pcs, batch_size):
N_sample = sample_pcs.shape[0]
N_ref = ref_pcs.shape[0]
all_cd = []
all_emd = []
iterator = range(N_sample)
matched_gt = []
pbar = tqdm(iterator)
for sample_b_start in pbar:
sample_batch = sample_pcs[sample_b_start]
cd_lst = []
emd_lst = []
for ref_b_start in range(0, N_ref, batch_size):
ref_b_end = min(N_ref, ref_b_start + batch_size)
ref_batch = ref_pcs[ref_b_start:ref_b_end]
batch_size_ref = ref_batch.size(0)
sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1)
sample_batch_exp = sample_batch_exp.contiguous()
dl, dr = distChamfer(sample_batch_exp, ref_batch)
cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1))
cd_lst = torch.cat(cd_lst, dim=1)
all_cd.append(cd_lst)
hit = np.argmin(cd_lst.detach().cpu().numpy()[0])
matched_gt.append(hit)
pbar.set_postfix({"cov": len(np.unique(matched_gt)) * 1.0 / N_ref})
all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref
return all_cd
def compute_cov_mmd(sample_pcs, ref_pcs, batch_size):
all_dist = _pairwise_CD(sample_pcs, ref_pcs, batch_size)
N_sample, N_ref = all_dist.size(0), all_dist.size(1)
min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
min_val, _ = torch.min(all_dist, dim=0)
mmd = min_val.mean()
cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref)
cov = torch.tensor(cov).to(all_dist)
return {
'MMD-CD': mmd.item(),
'COV-CD': cov.item(),
}
def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere, resolution=28):
'''Computes the JSD between two sets of point-clouds, as introduced in the paper ```Learning Representations And Generative Models For 3D Point Clouds```.
Args:
sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
resolution: (int) grid-resolution. Affects granularity of measurements.
'''
sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution, in_unit_sphere)[1]
ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution, in_unit_sphere)[1]
return jensen_shannon_divergence(sample_grid_var, ref_grid_var)
def entropy_of_occupancy_grid(pclouds, grid_resolution, in_sphere=False):
'''Given a collection of point-clouds, estimate the entropy of the random variables
corresponding to occupancy-grid activation patterns.
Inputs:
pclouds: (numpy array) #point-clouds x points per point-cloud x 3
grid_resolution (int) size of occupancy grid that will be used.
'''
epsilon = 10e-4
bound = 1 + epsilon
if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
print(abs(np.max(pclouds)), abs(np.min(pclouds)))
warnings.warn('Point-clouds are not in unit cube.')
if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound:
warnings.warn('Point-clouds are not in unit sphere.')
grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere)
grid_coordinates = grid_coordinates.reshape(-1, 3)
grid_counters = np.zeros(len(grid_coordinates))
grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)
for pc in pclouds:
_, indices = nn.kneighbors(pc)
indices = np.squeeze(indices)
for i in indices:
grid_counters[i] += 1
indices = np.unique(indices)
for i in indices:
grid_bernoulli_rvars[i] += 1
acc_entropy = 0.0
n = float(len(pclouds))
for g in grid_bernoulli_rvars:
p = 0.0
if g > 0:
p = float(g) / n
acc_entropy += entropy([p, 1.0 - p])
return acc_entropy / len(grid_counters), grid_counters
def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
'''Returns the center coordinates of each cell of a 3D grid with resolution^3 cells,
that is placed in the unit-cube.
If clip_sphere it True it drops the "corner" cells that lie outside the unit-sphere.
'''
grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
spacing = 1.0 / float(resolution - 1) * 2
for i in range(resolution):
for j in range(resolution):
for k in range(resolution):
grid[i, j, k, 0] = i * spacing - 0.5 * 2
grid[i, j, k, 1] = j * spacing - 0.5 * 2
grid[i, j, k, 2] = k * spacing - 0.5 * 2
if clip_sphere:
grid = grid.reshape(-1, 3)
grid = grid[np.linalg.norm(grid, axis=1) <= 0.5]
return grid, spacing
def jensen_shannon_divergence(P, Q):
if np.any(P < 0) or np.any(Q < 0):
raise ValueError('Negative values.')
if len(P) != len(Q):
raise ValueError('Non equal size.')
P_ = P / np.sum(P) # Ensure probabilities.
Q_ = Q / np.sum(Q)
e1 = entropy(P_, base=2)
e2 = entropy(Q_, base=2)
e_sum = entropy((P_ + Q_) / 2.0, base=2)
res = e_sum - ((e1 + e2) / 2.0)
res2 = _jsdiv(P_, Q_)
if not np.allclose(res, res2, atol=10e-5, rtol=0):
warnings.warn('Numerical values of two JSD methods don\'t agree.')
return res
def _jsdiv(P, Q):
'''another way of computing JSD'''
def _kldiv(A, B):
a = A.copy()
b = B.copy()
idx = np.logical_and(a > 0, b > 0)
a = a[idx]
b = b[idx]
return np.sum([v for v in a * np.log2(a / b)])
P_ = P / np.sum(P)
Q_ = Q / np.sum(Q)
M = 0.5 * (P_ + Q_)
return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M))
def downsample_pc(points, n):
sample_idx = random.sample(list(range(points.shape[0])), n)
return points[sample_idx]
def normalize_pc(points):
scale = np.max(np.abs(points))
points = points / scale
return points
def collect_test_set_pcs(args):
start = time.time()
with open(os.path.join(RECORD_FILE), "r") as fp:
all_data = json.load(fp)['test']
select_idx = random.sample(list(range(len(all_data))), args.n_test + 5)
all_data = [all_data[x] for x in select_idx]
ref_pcs = []
for data_id in all_data:
pc_path = os.path.join(PC_ROOT, data_id + '.ply')
if not os.path.exists(pc_path):
continue
pc = read_ply(pc_path)
if pc.shape[0] > N_POINTS:
pc = downsample_pc(pc, N_POINTS)
pc = normalize_pc(pc)
ref_pcs.append(pc)
if len(ref_pcs) >= args.n_test:
break
ref_pcs = np.stack(ref_pcs, axis=0)
print("reference point clouds: {}".format(ref_pcs.shape))
print("time: {:.2f}s".format(time.time() - start))
return ref_pcs
def collect_src_pcs(args):
start = time.time()
all_paths = sorted(glob.glob(os.path.join(args.src, "*.ply")))
if len(all_paths) < args.multi * args.n_test:
raise ValueError("Generate set too small: {}".format(len(all_paths)))
select_idx = random.sample(list(range(len(all_paths))), args.multi * args.n_test)
all_paths = [all_paths[x] for x in select_idx]
gen_pcs = []
for path in all_paths:
pc = read_ply(path)
if pc.shape[0] > N_POINTS:
pc = downsample_pc(pc, N_POINTS)
# if np.max(np.abs(pc)) > 1:
pc = normalize_pc(pc)
gen_pcs.append(pc)
gen_pcs = np.stack(gen_pcs, axis=0)
print("generated point clouds: {}".format(gen_pcs.shape))
print("time: {:.2f}s".format(time.time() - start))
return gen_pcs
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--src", type=str)
parser.add_argument('-g', '--gpu_ids', type=str, default=0, help="gpu to use, e.g. 0 0,1,2. CPU not supported.")
parser.add_argument("--n_test", type=int, default=1000)
parser.add_argument("--multi", type=int, default=3)
parser.add_argument("--times", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("-o", "--output", type=str)
args = parser.parse_args()
print("n_test: {}, multiplier: {}, repeat times: {}".format(args.n_test, args.multi, args.times))
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_ids)
if args.output is None:
args.output = args.src + '_eval_gen.txt'
fp = open(args.output, "w")
result_list = []
for i in range(args.times):
print("iteration {}...".format(i))
ref_pcs = collect_test_set_pcs(args)
sample_pcs = collect_src_pcs(args)
jsd = jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere=False)
sample_pcs = torch.tensor(sample_pcs).cuda()
ref_pcs = torch.tensor(ref_pcs).cuda()
result = compute_cov_mmd(sample_pcs, ref_pcs, batch_size=args.batch_size)
result.update({"JSD": jsd})
print(result)
print(result, file=fp)
result_list.append(result)
avg_result = {}
for k in result_list[0].keys():
avg_result.update({"avg-" + k: np.mean([x[k] for x in result_list])})
print("average result:")
print(avg_result)
print(avg_result, file=fp)
fp.close()
if __name__ == '__main__':
main()
|