File size: 10,197 Bytes
4d588ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import torch
import argparse
import os
import numpy as np
from tqdm import tqdm
import json
import time
import random
import glob
import warnings
from scipy.stats import entropy
from sklearn.neighbors import NearestNeighbors
import sys
sys.path.append("..")
from utils import read_ply

N_POINTS = 2000

random.seed(1234)

PC_ROOT = "../data/pc_cad"
RECORD_FILE = "../data/train_val_test_split.json"


def distChamfer(a, b):
    x, y = a, b
    bs, num_points, points_dim = x.size()
    xx = torch.bmm(x, x.transpose(2, 1))
    yy = torch.bmm(y, y.transpose(2, 1))
    zz = torch.bmm(x, y.transpose(2, 1))
    diag_ind = torch.arange(0, num_points).to(a).long()
    rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx)
    ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy)
    P = (rx.transpose(2, 1) + ry - 2 * zz)
    return P.min(1)[0], P.min(2)[0]


def _pairwise_CD(sample_pcs, ref_pcs, batch_size):
    N_sample = sample_pcs.shape[0]
    N_ref = ref_pcs.shape[0]
    all_cd = []
    all_emd = []
    iterator = range(N_sample)
    matched_gt = []
    pbar = tqdm(iterator)
    for sample_b_start in pbar:
        sample_batch = sample_pcs[sample_b_start]

        cd_lst = []
        emd_lst = []
        for ref_b_start in range(0, N_ref, batch_size):
            ref_b_end = min(N_ref, ref_b_start + batch_size)
            ref_batch = ref_pcs[ref_b_start:ref_b_end]

            batch_size_ref = ref_batch.size(0)
            sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1)
            sample_batch_exp = sample_batch_exp.contiguous()

            dl, dr = distChamfer(sample_batch_exp, ref_batch)
            cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1))

        cd_lst = torch.cat(cd_lst, dim=1)
        all_cd.append(cd_lst)

        hit = np.argmin(cd_lst.detach().cpu().numpy()[0])
        matched_gt.append(hit)
        pbar.set_postfix({"cov": len(np.unique(matched_gt)) * 1.0 / N_ref})

    all_cd = torch.cat(all_cd, dim=0)  # N_sample, N_ref

    return all_cd


def compute_cov_mmd(sample_pcs, ref_pcs, batch_size):
    all_dist = _pairwise_CD(sample_pcs, ref_pcs, batch_size)

    N_sample, N_ref = all_dist.size(0), all_dist.size(1)
    min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
    min_val, _ = torch.min(all_dist, dim=0)
    mmd = min_val.mean()
    cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref)
    cov = torch.tensor(cov).to(all_dist)

    return {
        'MMD-CD': mmd.item(),
        'COV-CD': cov.item(),
    }


def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere, resolution=28):
    '''Computes the JSD between two sets of point-clouds, as introduced in the paper ```Learning Representations And Generative Models For 3D Point Clouds```.
    Args:
        sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
        ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
        resolution: (int) grid-resolution. Affects granularity of measurements.
    '''
    sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution, in_unit_sphere)[1]
    ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution, in_unit_sphere)[1]
    return jensen_shannon_divergence(sample_grid_var, ref_grid_var)


def entropy_of_occupancy_grid(pclouds, grid_resolution, in_sphere=False):
    '''Given a collection of point-clouds, estimate the entropy of the random variables
    corresponding to occupancy-grid activation patterns.
    Inputs:
        pclouds: (numpy array) #point-clouds x points per point-cloud x 3
        grid_resolution (int) size of occupancy grid that will be used.
    '''
    epsilon = 10e-4
    bound = 1 + epsilon
    if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
        print(abs(np.max(pclouds)), abs(np.min(pclouds)))
        warnings.warn('Point-clouds are not in unit cube.')

    if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound:
        warnings.warn('Point-clouds are not in unit sphere.')

    grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere)
    grid_coordinates = grid_coordinates.reshape(-1, 3)
    grid_counters = np.zeros(len(grid_coordinates))
    grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
    nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)

    for pc in pclouds:
        _, indices = nn.kneighbors(pc)
        indices = np.squeeze(indices)
        for i in indices:
            grid_counters[i] += 1
        indices = np.unique(indices)
        for i in indices:
            grid_bernoulli_rvars[i] += 1

    acc_entropy = 0.0
    n = float(len(pclouds))
    for g in grid_bernoulli_rvars:
        p = 0.0
        if g > 0:
            p = float(g) / n
            acc_entropy += entropy([p, 1.0 - p])

    return acc_entropy / len(grid_counters), grid_counters


def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
    '''Returns the center coordinates of each cell of a 3D grid with resolution^3 cells,
    that is placed in the unit-cube.
    If clip_sphere it True it drops the "corner" cells that lie outside the unit-sphere.
    '''
    grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
    spacing = 1.0 / float(resolution - 1) * 2
    for i in range(resolution):
        for j in range(resolution):
            for k in range(resolution):
                grid[i, j, k, 0] = i * spacing - 0.5 * 2
                grid[i, j, k, 1] = j * spacing - 0.5 * 2
                grid[i, j, k, 2] = k * spacing - 0.5 * 2

    if clip_sphere:
        grid = grid.reshape(-1, 3)
        grid = grid[np.linalg.norm(grid, axis=1) <= 0.5]

    return grid, spacing


def jensen_shannon_divergence(P, Q):
    if np.any(P < 0) or np.any(Q < 0):
        raise ValueError('Negative values.')
    if len(P) != len(Q):
        raise ValueError('Non equal size.')

    P_ = P / np.sum(P)  # Ensure probabilities.
    Q_ = Q / np.sum(Q)

    e1 = entropy(P_, base=2)
    e2 = entropy(Q_, base=2)
    e_sum = entropy((P_ + Q_) / 2.0, base=2)
    res = e_sum - ((e1 + e2) / 2.0)

    res2 = _jsdiv(P_, Q_)

    if not np.allclose(res, res2, atol=10e-5, rtol=0):
        warnings.warn('Numerical values of two JSD methods don\'t agree.')

    return res


def _jsdiv(P, Q):
    '''another way of computing JSD'''

    def _kldiv(A, B):
        a = A.copy()
        b = B.copy()
        idx = np.logical_and(a > 0, b > 0)
        a = a[idx]
        b = b[idx]
        return np.sum([v for v in a * np.log2(a / b)])

    P_ = P / np.sum(P)
    Q_ = Q / np.sum(Q)

    M = 0.5 * (P_ + Q_)

    return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M))


def downsample_pc(points, n):
    sample_idx = random.sample(list(range(points.shape[0])), n)
    return points[sample_idx]


def normalize_pc(points):
    scale = np.max(np.abs(points))
    points = points / scale
    return points


def collect_test_set_pcs(args):
    start = time.time()

    with open(os.path.join(RECORD_FILE), "r") as fp:
        all_data = json.load(fp)['test']
    select_idx = random.sample(list(range(len(all_data))), args.n_test + 5)
    all_data = [all_data[x] for x in select_idx]

    ref_pcs = []
    for data_id in all_data:
        pc_path = os.path.join(PC_ROOT, data_id + '.ply')
        if not os.path.exists(pc_path):
            continue
        pc = read_ply(pc_path)
        if pc.shape[0] > N_POINTS:
            pc = downsample_pc(pc, N_POINTS)

        pc = normalize_pc(pc)
        ref_pcs.append(pc)
        if len(ref_pcs) >= args.n_test:
            break

    ref_pcs = np.stack(ref_pcs, axis=0)
    print("reference point clouds: {}".format(ref_pcs.shape))
    print("time: {:.2f}s".format(time.time() - start))
    return ref_pcs


def collect_src_pcs(args):
    start = time.time()

    all_paths = sorted(glob.glob(os.path.join(args.src, "*.ply")))
    if len(all_paths) < args.multi * args.n_test:
        raise ValueError("Generate set too small: {}".format(len(all_paths)))

    select_idx = random.sample(list(range(len(all_paths))), args.multi * args.n_test)
    all_paths = [all_paths[x] for x in select_idx]

    gen_pcs = []
    for path in all_paths:
        pc = read_ply(path)
        if pc.shape[0] > N_POINTS:
            pc = downsample_pc(pc, N_POINTS)

        # if np.max(np.abs(pc)) > 1:
        pc = normalize_pc(pc)
        gen_pcs.append(pc)

    gen_pcs = np.stack(gen_pcs, axis=0)
    print("generated point clouds: {}".format(gen_pcs.shape))
    print("time: {:.2f}s".format(time.time() - start))
    return gen_pcs


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--src", type=str)
    parser.add_argument('-g', '--gpu_ids', type=str, default=0, help="gpu to use, e.g. 0  0,1,2. CPU not supported.")
    parser.add_argument("--n_test", type=int, default=1000)
    parser.add_argument("--multi", type=int, default=3)
    parser.add_argument("--times", type=int, default=3)
    parser.add_argument("--batch_size", type=int, default=64)
    parser.add_argument("-o", "--output", type=str)
    args = parser.parse_args()

    print("n_test: {}, multiplier: {}, repeat times: {}".format(args.n_test, args.multi, args.times))

    os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_ids)

    if args.output is None:
        args.output = args.src + '_eval_gen.txt'

    fp = open(args.output, "w")

    result_list = []
    for i in range(args.times):
        print("iteration {}...".format(i))
        ref_pcs = collect_test_set_pcs(args)
        sample_pcs = collect_src_pcs(args)

        jsd = jsd_between_point_cloud_sets(sample_pcs, ref_pcs, in_unit_sphere=False)

        sample_pcs = torch.tensor(sample_pcs).cuda()
        ref_pcs = torch.tensor(ref_pcs).cuda()
        result = compute_cov_mmd(sample_pcs, ref_pcs, batch_size=args.batch_size)
        result.update({"JSD": jsd})

        print(result)
        print(result, file=fp)
        result_list.append(result)
    avg_result = {}
    for k in result_list[0].keys():
        avg_result.update({"avg-" + k: np.mean([x[k] for x in result_list])})
    print("average result:")
    print(avg_result)
    print(avg_result, file=fp)

    fp.close()


if __name__ == '__main__':
    main()