DeepCAD / train.py
turiya-ai's picture
Upload 51 files
4d588ce verified
raw
history blame
1.66 kB
from collections import OrderedDict
from tqdm import tqdm
import argparse
from dataset.cad_dataset import get_dataloader
from config import ConfigAE
from utils import cycle
from trainer import TrainerAE
def main():
# create experiment cfg containing all hyperparameters
cfg = ConfigAE('train')
# create network and training agent
tr_agent = TrainerAE(cfg)
# load from checkpoint if provided
if cfg.cont:
tr_agent.load_ckpt(cfg.ckpt)
# create dataloader
train_loader = get_dataloader('train', cfg)
val_loader = get_dataloader('validation', cfg)
val_loader_all = get_dataloader('validation', cfg)
val_loader = cycle(val_loader)
# start training
clock = tr_agent.clock
for e in range(clock.epoch, cfg.nr_epochs):
# begin iteration
pbar = tqdm(train_loader)
for b, data in enumerate(pbar):
# train step
outputs, losses = tr_agent.train_func(data)
pbar.set_description("EPOCH[{}][{}]".format(e, b))
pbar.set_postfix(OrderedDict({k: v.item() for k, v in losses.items()}))
# validation step
if clock.step % cfg.val_frequency == 0:
data = next(val_loader)
outputs, losses = tr_agent.val_func(data)
clock.tick()
tr_agent.update_learning_rate()
if clock.epoch % 5 == 0:
tr_agent.evaluate(val_loader_all)
clock.tock()
if clock.epoch % cfg.save_frequency == 0:
tr_agent.save_ckpt()
# if clock.epoch % 10 == 0:
tr_agent.save_ckpt('latest')
if __name__ == '__main__':
main()