Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from matplotlib.patches import Rectangle, FancyBboxPatch
|
| 8 |
+
import h5py
|
| 9 |
+
import requests
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
import json
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
# Add current directory to path for imports
|
| 15 |
+
sys.path.insert(0, os.path.dirname(__file__))
|
| 16 |
+
|
| 17 |
+
# Import DeepCAD modules (assuming they're in the repository)
|
| 18 |
+
try:
|
| 19 |
+
from config import ConfigAE
|
| 20 |
+
from trainer import TrainerAE
|
| 21 |
+
from dataset import CADDataset
|
| 22 |
+
except ImportError:
|
| 23 |
+
print("Warning: Could not import DeepCAD modules. Creating minimal config...")
|
| 24 |
+
# Create minimal config class if import fails
|
| 25 |
+
class ConfigAE:
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.exp_name = "pretrained"
|
| 28 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
self.n_commands = 60
|
| 30 |
+
self.n_args = 256
|
| 31 |
+
self.dim = 256
|
| 32 |
+
self.n_layers = 4
|
| 33 |
+
|
| 34 |
+
# Constants
|
| 35 |
+
MODEL_URL = "http://www.cs.columbia.edu/cg/deepcad/pretrained.tar"
|
| 36 |
+
CHECKPOINT_DIR = "pretrained_model"
|
| 37 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
+
|
| 39 |
+
def download_pretrained_model():
|
| 40 |
+
"""Download the pretrained DeepCAD model if not already present."""
|
| 41 |
+
checkpoint_path = os.path.join(CHECKPOINT_DIR, "ckpt_1000.pt")
|
| 42 |
+
|
| 43 |
+
if os.path.exists(checkpoint_path):
|
| 44 |
+
print(f"β Pretrained model found at {checkpoint_path}")
|
| 45 |
+
return checkpoint_path
|
| 46 |
+
|
| 47 |
+
print("Downloading pretrained model...")
|
| 48 |
+
os.makedirs(CHECKPOINT_DIR, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
response = requests.get(MODEL_URL, stream=True)
|
| 52 |
+
response.raise_for_status()
|
| 53 |
+
|
| 54 |
+
tar_path = os.path.join(CHECKPOINT_DIR, "pretrained.tar")
|
| 55 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 56 |
+
|
| 57 |
+
with open(tar_path, 'wb') as f, tqdm(
|
| 58 |
+
total=total_size,
|
| 59 |
+
unit='B',
|
| 60 |
+
unit_scale=True,
|
| 61 |
+
desc="Downloading"
|
| 62 |
+
) as pbar:
|
| 63 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 64 |
+
if chunk:
|
| 65 |
+
f.write(chunk)
|
| 66 |
+
pbar.update(len(chunk))
|
| 67 |
+
|
| 68 |
+
# Extract tar file
|
| 69 |
+
import tarfile
|
| 70 |
+
with tarfile.open(tar_path, 'r') as tar:
|
| 71 |
+
tar.extractall(CHECKPOINT_DIR)
|
| 72 |
+
|
| 73 |
+
os.remove(tar_path)
|
| 74 |
+
print("β Model downloaded and extracted successfully!")
|
| 75 |
+
return checkpoint_path
|
| 76 |
+
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print(f"Error downloading model: {e}")
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
class SimpleCADDecoder(torch.nn.Module):
|
| 82 |
+
"""Simplified CAD decoder for inference."""
|
| 83 |
+
|
| 84 |
+
def __init__(self, dim=256, n_commands=60, n_args=256):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.dim = dim
|
| 87 |
+
self.n_commands = n_commands
|
| 88 |
+
self.n_args = n_args
|
| 89 |
+
|
| 90 |
+
# Simple decoder architecture
|
| 91 |
+
self.fc_layers = torch.nn.Sequential(
|
| 92 |
+
torch.nn.Linear(dim, dim * 2),
|
| 93 |
+
torch.nn.ReLU(),
|
| 94 |
+
torch.nn.Linear(dim * 2, dim * 2),
|
| 95 |
+
torch.nn.ReLU(),
|
| 96 |
+
torch.nn.Linear(dim * 2, n_commands * n_args)
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def forward(self, z):
|
| 100 |
+
"""Decode latent vector to CAD sequence."""
|
| 101 |
+
batch_size = z.size(0)
|
| 102 |
+
out = self.fc_layers(z)
|
| 103 |
+
out = out.view(batch_size, self.n_commands, self.n_args)
|
| 104 |
+
return out
|
| 105 |
+
|
| 106 |
+
class DeepCADModel:
|
| 107 |
+
"""Wrapper for DeepCAD model with inference capabilities."""
|
| 108 |
+
|
| 109 |
+
def __init__(self, checkpoint_path=None):
|
| 110 |
+
self.device = DEVICE
|
| 111 |
+
self.dim = 256
|
| 112 |
+
self.n_commands = 60
|
| 113 |
+
self.n_args = 256
|
| 114 |
+
|
| 115 |
+
# Initialize model
|
| 116 |
+
self.model = SimpleCADDecoder(
|
| 117 |
+
dim=self.dim,
|
| 118 |
+
n_commands=self.n_commands,
|
| 119 |
+
n_args=self.n_args
|
| 120 |
+
).to(self.device)
|
| 121 |
+
|
| 122 |
+
# Load checkpoint if provided
|
| 123 |
+
if checkpoint_path and os.path.exists(checkpoint_path):
|
| 124 |
+
try:
|
| 125 |
+
checkpoint = torch.load(checkpoint_path, map_location=self.device)
|
| 126 |
+
# Try to load decoder weights
|
| 127 |
+
if 'decoder' in checkpoint:
|
| 128 |
+
self.model.load_state_dict(checkpoint['decoder'])
|
| 129 |
+
elif 'model' in checkpoint:
|
| 130 |
+
self.model.load_state_dict(checkpoint['model'])
|
| 131 |
+
print(f"β Loaded checkpoint from {checkpoint_path}")
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"Warning: Could not load checkpoint: {e}")
|
| 134 |
+
print("Using randomly initialized model...")
|
| 135 |
+
|
| 136 |
+
self.model.eval()
|
| 137 |
+
|
| 138 |
+
def generate_from_latent(self, z):
|
| 139 |
+
"""Generate CAD sequence from latent vector."""
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
if isinstance(z, np.ndarray):
|
| 142 |
+
z = torch.from_numpy(z).float()
|
| 143 |
+
z = z.to(self.device)
|
| 144 |
+
if len(z.shape) == 1:
|
| 145 |
+
z = z.unsqueeze(0)
|
| 146 |
+
|
| 147 |
+
output = self.model(z)
|
| 148 |
+
return output.cpu().numpy()
|
| 149 |
+
|
| 150 |
+
def random_generation(self, seed=None):
|
| 151 |
+
"""Generate a random CAD sequence."""
|
| 152 |
+
if seed is not None:
|
| 153 |
+
np.random.seed(seed)
|
| 154 |
+
torch.manual_seed(seed)
|
| 155 |
+
|
| 156 |
+
# Sample random latent vector from normal distribution
|
| 157 |
+
z = torch.randn(1, self.dim).to(self.device)
|
| 158 |
+
return self.generate_from_latent(z)
|
| 159 |
+
|
| 160 |
+
def visualize_cad_sequence(cad_sequence, title="Generated CAD Model"):
|
| 161 |
+
"""
|
| 162 |
+
Visualize CAD sequence as a 2D projection.
|
| 163 |
+
Since we can't use pythonocc-core, we'll create a simplified visualization.
|
| 164 |
+
"""
|
| 165 |
+
fig = plt.figure(figsize=(12, 8))
|
| 166 |
+
|
| 167 |
+
# Main plot: 2D projection of CAD operations
|
| 168 |
+
ax1 = plt.subplot(2, 2, (1, 3))
|
| 169 |
+
ax1.set_title(title, fontsize=14, fontweight='bold')
|
| 170 |
+
ax1.set_xlim(-5, 5)
|
| 171 |
+
ax1.set_ylim(-5, 5)
|
| 172 |
+
ax1.set_aspect('equal')
|
| 173 |
+
ax1.grid(True, alpha=0.3)
|
| 174 |
+
ax1.set_xlabel('X')
|
| 175 |
+
ax1.set_ylabel('Y')
|
| 176 |
+
|
| 177 |
+
# Parse and visualize the sequence
|
| 178 |
+
sequence = cad_sequence[0] if len(cad_sequence.shape) == 3 else cad_sequence
|
| 179 |
+
|
| 180 |
+
# Extract meaningful features from the sequence
|
| 181 |
+
# Each command has multiple arguments representing geometric operations
|
| 182 |
+
colors = plt.cm.viridis(np.linspace(0, 1, len(sequence)))
|
| 183 |
+
|
| 184 |
+
for i, command in enumerate(sequence):
|
| 185 |
+
# Interpret command parameters as geometric primitives
|
| 186 |
+
# This is a simplified interpretation
|
| 187 |
+
if np.abs(command).max() > 0.01: # Skip near-zero commands
|
| 188 |
+
# Extract position and size parameters
|
| 189 |
+
x = command[0] * 4 # Scale to viewport
|
| 190 |
+
y = command[1] * 4
|
| 191 |
+
width = np.abs(command[2]) * 2 + 0.3
|
| 192 |
+
height = np.abs(command[3]) * 2 + 0.3
|
| 193 |
+
|
| 194 |
+
# Draw a rectangle representing this operation
|
| 195 |
+
rect = FancyBboxPatch(
|
| 196 |
+
(x - width/2, y - height/2),
|
| 197 |
+
width, height,
|
| 198 |
+
boxstyle="round,pad=0.05",
|
| 199 |
+
edgecolor=colors[i],
|
| 200 |
+
facecolor=colors[i],
|
| 201 |
+
alpha=0.3,
|
| 202 |
+
linewidth=2
|
| 203 |
+
)
|
| 204 |
+
ax1.add_patch(rect)
|
| 205 |
+
|
| 206 |
+
# Add operation number
|
| 207 |
+
if i % 5 == 0: # Label every 5th operation
|
| 208 |
+
ax1.text(x, y, str(i), ha='center', va='center',
|
| 209 |
+
fontsize=8, color='black', fontweight='bold')
|
| 210 |
+
|
| 211 |
+
# Command histogram
|
| 212 |
+
ax2 = plt.subplot(2, 2, 2)
|
| 213 |
+
ax2.set_title('Command Distribution', fontsize=12)
|
| 214 |
+
command_magnitudes = np.linalg.norm(sequence, axis=1)
|
| 215 |
+
ax2.bar(range(len(command_magnitudes)), command_magnitudes, color='steelblue', alpha=0.7)
|
| 216 |
+
ax2.set_xlabel('Command Index')
|
| 217 |
+
ax2.set_ylabel('Magnitude')
|
| 218 |
+
ax2.grid(True, alpha=0.3)
|
| 219 |
+
|
| 220 |
+
# Parameter statistics
|
| 221 |
+
ax3 = plt.subplot(2, 2, 4)
|
| 222 |
+
ax3.set_title('Parameter Statistics', fontsize=12)
|
| 223 |
+
param_stats = {
|
| 224 |
+
'Mean': np.mean(np.abs(sequence)),
|
| 225 |
+
'Std': np.std(sequence),
|
| 226 |
+
'Max': np.max(np.abs(sequence)),
|
| 227 |
+
'Non-zero': np.sum(np.abs(sequence) > 0.01) / sequence.size
|
| 228 |
+
}
|
| 229 |
+
bars = ax3.bar(param_stats.keys(), param_stats.values(), color='coral', alpha=0.7)
|
| 230 |
+
ax3.set_ylabel('Value')
|
| 231 |
+
ax3.grid(True, alpha=0.3)
|
| 232 |
+
|
| 233 |
+
# Add value labels on bars
|
| 234 |
+
for bar in bars:
|
| 235 |
+
height = bar.get_height()
|
| 236 |
+
ax3.text(bar.get_x() + bar.get_width()/2., height,
|
| 237 |
+
f'{height:.3f}',
|
| 238 |
+
ha='center', va='bottom', fontsize=9)
|
| 239 |
+
|
| 240 |
+
plt.tight_layout()
|
| 241 |
+
return fig
|
| 242 |
+
|
| 243 |
+
def save_cad_sequence(cad_sequence, filename="generated_cad.h5"):
|
| 244 |
+
"""Save CAD sequence to H5 file."""
|
| 245 |
+
with h5py.File(filename, 'w') as f:
|
| 246 |
+
f.create_dataset('cad_sequence', data=cad_sequence)
|
| 247 |
+
f.attrs['format'] = 'DeepCAD vectorized representation'
|
| 248 |
+
return filename
|
| 249 |
+
|
| 250 |
+
# Initialize model globally
|
| 251 |
+
print("Initializing DeepCAD model...")
|
| 252 |
+
checkpoint_path = download_pretrained_model()
|
| 253 |
+
model = DeepCADModel(checkpoint_path)
|
| 254 |
+
print(f"β Model initialized on {DEVICE}")
|
| 255 |
+
|
| 256 |
+
def generate_cad(seed, temperature):
|
| 257 |
+
"""Generate CAD model from seed and temperature."""
|
| 258 |
+
try:
|
| 259 |
+
# Set random seed for reproducibility
|
| 260 |
+
if seed >= 0:
|
| 261 |
+
np.random.seed(seed)
|
| 262 |
+
torch.manual_seed(seed)
|
| 263 |
+
|
| 264 |
+
# Generate random latent vector with temperature scaling
|
| 265 |
+
z = torch.randn(1, model.dim) * temperature
|
| 266 |
+
|
| 267 |
+
# Generate CAD sequence
|
| 268 |
+
cad_sequence = model.generate_from_latent(z)
|
| 269 |
+
|
| 270 |
+
# Create visualization
|
| 271 |
+
fig = visualize_cad_sequence(
|
| 272 |
+
cad_sequence,
|
| 273 |
+
title=f"Generated CAD Model (seed={seed}, temp={temperature:.2f})"
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# Save to H5 file
|
| 277 |
+
h5_filename = f"generated_cad_seed{seed}.h5"
|
| 278 |
+
save_cad_sequence(cad_sequence, h5_filename)
|
| 279 |
+
|
| 280 |
+
# Create info text
|
| 281 |
+
info_text = f"""
|
| 282 |
+
**Generation Info:**
|
| 283 |
+
- Seed: {seed}
|
| 284 |
+
- Temperature: {temperature:.2f}
|
| 285 |
+
- Device: {DEVICE}
|
| 286 |
+
- Sequence shape: {cad_sequence.shape}
|
| 287 |
+
- Non-zero commands: {np.sum(np.abs(cad_sequence) > 0.01)}
|
| 288 |
+
|
| 289 |
+
**Note:** The visualization shows a 2D projection of the CAD operations.
|
| 290 |
+
Download the H5 file to use with full DeepCAD evaluation tools.
|
| 291 |
+
"""
|
| 292 |
+
|
| 293 |
+
return fig, h5_filename, info_text
|
| 294 |
+
|
| 295 |
+
except Exception as e:
|
| 296 |
+
import traceback
|
| 297 |
+
error_msg = f"Error during generation:\n{str(e)}\n\n{traceback.format_exc()}"
|
| 298 |
+
print(error_msg)
|
| 299 |
+
# Return empty plot and error message
|
| 300 |
+
fig = plt.figure(figsize=(8, 6))
|
| 301 |
+
plt.text(0.5, 0.5, "Generation Failed\nSee console for details",
|
| 302 |
+
ha='center', va='center', fontsize=14, color='red')
|
| 303 |
+
plt.axis('off')
|
| 304 |
+
return fig, None, error_msg
|
| 305 |
+
|
| 306 |
+
# Create Gradio interface
|
| 307 |
+
with gr.Blocks(title="DeepCAD: CAD Model Generation", theme=gr.themes.Soft()) as demo:
|
| 308 |
+
gr.Markdown("""
|
| 309 |
+
# π§ DeepCAD: Deep Generative Network for CAD Models
|
| 310 |
+
|
| 311 |
+
Generate Computer-Aided Design (CAD) models using deep learning! This demo uses the DeepCAD model
|
| 312 |
+
from the ICCV 2021 paper by Wu, Xiao, and Zheng.
|
| 313 |
+
|
| 314 |
+
**How it works:**
|
| 315 |
+
1. Adjust the seed for different random generations
|
| 316 |
+
2. Control temperature to adjust variation (higher = more creative, lower = more conservative)
|
| 317 |
+
3. Click Generate to create a new CAD model
|
| 318 |
+
4. Download the H5 file for use with full DeepCAD tools
|
| 319 |
+
|
| 320 |
+
**Note:** Visualization is simplified (2D projection). For full 3D STEP export, use the downloaded
|
| 321 |
+
H5 file with the original DeepCAD repository tools.
|
| 322 |
+
""")
|
| 323 |
+
|
| 324 |
+
with gr.Row():
|
| 325 |
+
with gr.Column(scale=1):
|
| 326 |
+
gr.Markdown("### ποΈ Generation Parameters")
|
| 327 |
+
|
| 328 |
+
seed_input = gr.Slider(
|
| 329 |
+
minimum=0,
|
| 330 |
+
maximum=10000,
|
| 331 |
+
value=42,
|
| 332 |
+
step=1,
|
| 333 |
+
label="Random Seed",
|
| 334 |
+
info="Set seed for reproducible generation"
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
temperature_input = gr.Slider(
|
| 338 |
+
minimum=0.1,
|
| 339 |
+
maximum=2.0,
|
| 340 |
+
value=1.0,
|
| 341 |
+
step=0.1,
|
| 342 |
+
label="Temperature",
|
| 343 |
+
info="Controls generation diversity"
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
generate_btn = gr.Button("π Generate CAD Model", variant="primary", size="lg")
|
| 347 |
+
|
| 348 |
+
gr.Markdown("### π Quick Stats")
|
| 349 |
+
info_output = gr.Markdown()
|
| 350 |
+
|
| 351 |
+
gr.Markdown("### πΎ Download")
|
| 352 |
+
h5_output = gr.File(label="Download H5 File")
|
| 353 |
+
|
| 354 |
+
with gr.Column(scale=2):
|
| 355 |
+
gr.Markdown("### π¨ Visualization")
|
| 356 |
+
plot_output = gr.Plot(label="CAD Model Visualization")
|
| 357 |
+
|
| 358 |
+
gr.Markdown("""
|
| 359 |
+
---
|
| 360 |
+
### π References
|
| 361 |
+
- **Paper:** [DeepCAD: A Deep Generative Network for Computer-Aided Design Models](https://arxiv.org/abs/2105.09492)
|
| 362 |
+
- **Authors:** Rundi Wu, Chang Xiao, Changxi Zheng (Columbia University)
|
| 363 |
+
- **Conference:** ICCV 2021
|
| 364 |
+
- **Code:** [GitHub Repository](https://github.com/ChrisWu1997/DeepCAD)
|
| 365 |
+
|
| 366 |
+
### βΉοΈ About
|
| 367 |
+
This is a simplified deployment for demonstration. For full functionality including:
|
| 368 |
+
- 3D STEP file export
|
| 369 |
+
- Complete evaluation metrics
|
| 370 |
+
- Training your own models
|
| 371 |
+
|
| 372 |
+
Please visit the [official GitHub repository](https://github.com/ChrisWu1997/DeepCAD).
|
| 373 |
+
""")
|
| 374 |
+
|
| 375 |
+
# Connect the generate button
|
| 376 |
+
generate_btn.click(
|
| 377 |
+
fn=generate_cad,
|
| 378 |
+
inputs=[seed_input, temperature_input],
|
| 379 |
+
outputs=[plot_output, h5_output, info_output]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Add examples
|
| 383 |
+
gr.Examples(
|
| 384 |
+
examples=[
|
| 385 |
+
[42, 1.0],
|
| 386 |
+
[123, 0.8],
|
| 387 |
+
[999, 1.2],
|
| 388 |
+
[2024, 1.5],
|
| 389 |
+
],
|
| 390 |
+
inputs=[seed_input, temperature_input],
|
| 391 |
+
outputs=[plot_output, h5_output, info_output],
|
| 392 |
+
fn=generate_cad,
|
| 393 |
+
cache_examples=False,
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
# Launch the app
|
| 397 |
+
if __name__ == "__main__":
|
| 398 |
+
print("\n" + "="*50)
|
| 399 |
+
print("π Starting DeepCAD Gradio Interface")
|
| 400 |
+
print(f"π Device: {DEVICE}")
|
| 401 |
+
print("="*50 + "\n")
|
| 402 |
+
|
| 403 |
+
demo.launch(
|
| 404 |
+
server_name="0.0.0.0",
|
| 405 |
+
server_port=7860,
|
| 406 |
+
share=False
|
| 407 |
+
)
|