from .layers.transformer import * from .layers.improved_transformer import * from .layers.positional_encoding import * from .model_utils import _make_seq_first, _make_batch_first, \ _get_padding_mask, _get_key_padding_mask, _get_group_mask class CADEmbedding(nn.Module): """Embedding: positional embed + command embed + parameter embed + group embed (optional)""" def __init__(self, cfg, seq_len, use_group=False, group_len=None): super().__init__() self.command_embed = nn.Embedding(cfg.n_commands, cfg.d_model) args_dim = cfg.args_dim + 1 self.arg_embed = nn.Embedding(args_dim, 64, padding_idx=0) self.embed_fcn = nn.Linear(64 * cfg.n_args, cfg.d_model) # use_group: additional embedding for each sketch-extrusion pair self.use_group = use_group if use_group: if group_len is None: group_len = cfg.max_num_groups self.group_embed = nn.Embedding(group_len + 2, cfg.d_model) self.pos_encoding = PositionalEncodingLUT(cfg.d_model, max_len=seq_len+2) def forward(self, commands, args, groups=None): S, N = commands.shape src = self.command_embed(commands.long()) + \ self.embed_fcn(self.arg_embed((args + 1).long()).view(S, N, -1)) # shift due to -1 PAD_VAL if self.use_group: src = src + self.group_embed(groups.long()) src = self.pos_encoding(src) return src class ConstEmbedding(nn.Module): """learned constant embedding""" def __init__(self, cfg, seq_len): super().__init__() self.d_model = cfg.d_model self.seq_len = seq_len self.PE = PositionalEncodingLUT(cfg.d_model, max_len=seq_len) def forward(self, z): N = z.size(1) src = self.PE(z.new_zeros(self.seq_len, N, self.d_model)) return src class Encoder(nn.Module): def __init__(self, cfg): super().__init__() seq_len = cfg.max_total_len self.use_group = cfg.use_group_emb self.embedding = CADEmbedding(cfg, seq_len, use_group=self.use_group) encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout) encoder_norm = LayerNorm(cfg.d_model) self.encoder = TransformerEncoder(encoder_layer, cfg.n_layers, encoder_norm) def forward(self, commands, args): padding_mask, key_padding_mask = _get_padding_mask(commands, seq_dim=0), _get_key_padding_mask(commands, seq_dim=0) group_mask = _get_group_mask(commands, seq_dim=0) if self.use_group else None src = self.embedding(commands, args, group_mask) memory = self.encoder(src, mask=None, src_key_padding_mask=key_padding_mask) z = (memory * padding_mask).sum(dim=0, keepdim=True) / padding_mask.sum(dim=0, keepdim=True) # (1, N, dim_z) return z class FCN(nn.Module): def __init__(self, d_model, n_commands, n_args, args_dim=256): super().__init__() self.n_args = n_args self.args_dim = args_dim self.command_fcn = nn.Linear(d_model, n_commands) self.args_fcn = nn.Linear(d_model, n_args * args_dim) def forward(self, out): S, N, _ = out.shape command_logits = self.command_fcn(out) # Shape [S, N, n_commands] args_logits = self.args_fcn(out) # Shape [S, N, n_args * args_dim] args_logits = args_logits.reshape(S, N, self.n_args, self.args_dim) # Shape [S, N, n_args, args_dim] return command_logits, args_logits class Decoder(nn.Module): def __init__(self, cfg): super(Decoder, self).__init__() self.embedding = ConstEmbedding(cfg, cfg.max_total_len) decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout) decoder_norm = LayerNorm(cfg.d_model) self.decoder = TransformerDecoder(decoder_layer, cfg.n_layers_decode, decoder_norm) args_dim = cfg.args_dim + 1 self.fcn = FCN(cfg.d_model, cfg.n_commands, cfg.n_args, args_dim) def forward(self, z): src = self.embedding(z) out = self.decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None) command_logits, args_logits = self.fcn(out) out_logits = (command_logits, args_logits) return out_logits class Bottleneck(nn.Module): def __init__(self, cfg): super(Bottleneck, self).__init__() self.bottleneck = nn.Sequential(nn.Linear(cfg.d_model, cfg.dim_z), nn.Tanh()) def forward(self, z): return self.bottleneck(z) class CADTransformer(nn.Module): def __init__(self, cfg): super(CADTransformer, self).__init__() self.args_dim = cfg.args_dim + 1 self.encoder = Encoder(cfg) self.bottleneck = Bottleneck(cfg) self.decoder = Decoder(cfg) def forward(self, commands_enc, args_enc, z=None, return_tgt=True, encode_mode=False): commands_enc_, args_enc_ = _make_seq_first(commands_enc, args_enc) # Possibly None, None if z is None: z = self.encoder(commands_enc_, args_enc_) z = self.bottleneck(z) else: z = _make_seq_first(z) if encode_mode: return _make_batch_first(z) out_logits = self.decoder(z) out_logits = _make_batch_first(*out_logits) res = { "command_logits": out_logits[0], "args_logits": out_logits[1] } if return_tgt: res["tgt_commands"] = commands_enc res["tgt_args"] = args_enc return res