Spaces:
Runtime error
Runtime error
Create models.py
Browse files- retinaface/models.py +301 -0
retinaface/models.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow.keras import Model
|
| 3 |
+
from tensorflow.keras.applications import MobileNetV2, ResNet50
|
| 4 |
+
from tensorflow.keras.layers import Input, Conv2D, ReLU, LeakyReLU
|
| 5 |
+
from retinaface.anchor import decode_tf, prior_box_tf
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def _regularizer(weights_decay):
|
| 9 |
+
"""l2 regularizer"""
|
| 10 |
+
return tf.keras.regularizers.l2(weights_decay)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def _kernel_init(scale=1.0, seed=None):
|
| 14 |
+
"""He normal initializer"""
|
| 15 |
+
return tf.keras.initializers.he_normal()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class BatchNormalization(tf.keras.layers.BatchNormalization):
|
| 19 |
+
"""Make trainable=False freeze BN for real (the og version is sad).
|
| 20 |
+
ref: https://github.com/zzh8829/yolov3-tf2
|
| 21 |
+
"""
|
| 22 |
+
def __init__(self, axis=-1, momentum=0.9, epsilon=1e-5, center=True,
|
| 23 |
+
scale=True, name=None, **kwargs):
|
| 24 |
+
super(BatchNormalization, self).__init__(
|
| 25 |
+
axis=axis, momentum=momentum, epsilon=epsilon, center=center,
|
| 26 |
+
scale=scale, name=name, **kwargs)
|
| 27 |
+
|
| 28 |
+
def call(self, x, training=False):
|
| 29 |
+
if training is None:
|
| 30 |
+
training = tf.constant(False)
|
| 31 |
+
training = tf.logical_and(training, self.trainable)
|
| 32 |
+
|
| 33 |
+
return super().call(x, training)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def Backbone(backbone_type='ResNet50', use_pretrain=True):
|
| 37 |
+
"""Backbone Model"""
|
| 38 |
+
weights = None
|
| 39 |
+
if use_pretrain:
|
| 40 |
+
weights = 'imagenet'
|
| 41 |
+
|
| 42 |
+
def backbone(x):
|
| 43 |
+
if backbone_type == 'ResNet50':
|
| 44 |
+
extractor = ResNet50(
|
| 45 |
+
input_shape=x.shape[1:], include_top=False, weights=weights)
|
| 46 |
+
pick_layer1 = 80 # [80, 80, 512]
|
| 47 |
+
pick_layer2 = 142 # [40, 40, 1024]
|
| 48 |
+
pick_layer3 = 174 # [20, 20, 2048]
|
| 49 |
+
preprocess = tf.keras.applications.resnet.preprocess_input
|
| 50 |
+
elif backbone_type == 'MobileNetV2':
|
| 51 |
+
extractor = MobileNetV2(
|
| 52 |
+
input_shape=x.shape[1:], include_top=False, weights=weights)
|
| 53 |
+
pick_layer1 = 54 # [80, 80, 32]
|
| 54 |
+
pick_layer2 = 116 # [40, 40, 96]
|
| 55 |
+
pick_layer3 = 143 # [20, 20, 160]
|
| 56 |
+
preprocess = tf.keras.applications.mobilenet_v2.preprocess_input
|
| 57 |
+
else:
|
| 58 |
+
raise NotImplementedError(
|
| 59 |
+
'Backbone type {} is not recognized.'.format(backbone_type))
|
| 60 |
+
|
| 61 |
+
return Model(extractor.input,
|
| 62 |
+
(extractor.layers[pick_layer1].output,
|
| 63 |
+
extractor.layers[pick_layer2].output,
|
| 64 |
+
extractor.layers[pick_layer3].output),
|
| 65 |
+
name=backbone_type + '_extrator')(preprocess(x))
|
| 66 |
+
|
| 67 |
+
return backbone
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class ConvUnit(tf.keras.layers.Layer):
|
| 71 |
+
"""Conv + BN + Act"""
|
| 72 |
+
def __init__(self, f, k, s, wd, act=None, **kwargs):
|
| 73 |
+
super(ConvUnit, self).__init__(**kwargs)
|
| 74 |
+
self.conv = Conv2D(filters=f, kernel_size=k, strides=s, padding='same',
|
| 75 |
+
kernel_initializer=_kernel_init(),
|
| 76 |
+
kernel_regularizer=_regularizer(wd),
|
| 77 |
+
use_bias=False)
|
| 78 |
+
self.bn = BatchNormalization()
|
| 79 |
+
|
| 80 |
+
if act is None:
|
| 81 |
+
self.act_fn = tf.identity
|
| 82 |
+
elif act == 'relu':
|
| 83 |
+
self.act_fn = ReLU()
|
| 84 |
+
elif act == 'lrelu':
|
| 85 |
+
self.act_fn = LeakyReLU(0.1)
|
| 86 |
+
else:
|
| 87 |
+
raise NotImplementedError(
|
| 88 |
+
'Activation function type {} is not recognized.'.format(act))
|
| 89 |
+
|
| 90 |
+
def call(self, x):
|
| 91 |
+
return self.act_fn(self.bn(self.conv(x)))
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class FPN(tf.keras.layers.Layer):
|
| 95 |
+
"""Feature Pyramid Network"""
|
| 96 |
+
def __init__(self, out_ch, wd, **kwargs):
|
| 97 |
+
super(FPN, self).__init__(**kwargs)
|
| 98 |
+
act = 'relu'
|
| 99 |
+
self.out_ch = out_ch
|
| 100 |
+
self.wd = wd
|
| 101 |
+
if (out_ch <= 64):
|
| 102 |
+
act = 'lrelu'
|
| 103 |
+
|
| 104 |
+
self.output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
| 105 |
+
self.output2 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
| 106 |
+
self.output3 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
| 107 |
+
self.merge1 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
|
| 108 |
+
self.merge2 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
|
| 109 |
+
|
| 110 |
+
def call(self, x):
|
| 111 |
+
output1 = self.output1(x[0]) # [80, 80, out_ch]
|
| 112 |
+
output2 = self.output2(x[1]) # [40, 40, out_ch]
|
| 113 |
+
output3 = self.output3(x[2]) # [20, 20, out_ch]
|
| 114 |
+
|
| 115 |
+
up_h, up_w = tf.shape(output2)[1], tf.shape(output2)[2]
|
| 116 |
+
up3 = tf.image.resize(output3, [up_h, up_w], method='nearest')
|
| 117 |
+
output2 = output2 + up3
|
| 118 |
+
output2 = self.merge2(output2)
|
| 119 |
+
|
| 120 |
+
up_h, up_w = tf.shape(output1)[1], tf.shape(output1)[2]
|
| 121 |
+
up2 = tf.image.resize(output2, [up_h, up_w], method='nearest')
|
| 122 |
+
output1 = output1 + up2
|
| 123 |
+
output1 = self.merge1(output1)
|
| 124 |
+
|
| 125 |
+
return output1, output2, output3
|
| 126 |
+
|
| 127 |
+
def get_config(self):
|
| 128 |
+
config = {
|
| 129 |
+
'out_ch': self.out_ch,
|
| 130 |
+
'wd': self.wd,
|
| 131 |
+
}
|
| 132 |
+
base_config = super(FPN, self).get_config()
|
| 133 |
+
return dict(list(base_config.items()) + list(config.items()))
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class SSH(tf.keras.layers.Layer):
|
| 137 |
+
"""Single Stage Headless Layer"""
|
| 138 |
+
def __init__(self, out_ch, wd, **kwargs):
|
| 139 |
+
super(SSH, self).__init__(**kwargs)
|
| 140 |
+
assert out_ch % 4 == 0
|
| 141 |
+
self.out_ch = out_ch
|
| 142 |
+
self.wd = wd
|
| 143 |
+
act = 'relu'
|
| 144 |
+
if (out_ch <= 64):
|
| 145 |
+
act = 'lrelu'
|
| 146 |
+
|
| 147 |
+
self.conv_3x3 = ConvUnit(f=out_ch // 2, k=3, s=1, wd=wd, act=None)
|
| 148 |
+
|
| 149 |
+
self.conv_5x5_1 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
|
| 150 |
+
self.conv_5x5_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
|
| 151 |
+
|
| 152 |
+
self.conv_7x7_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
|
| 153 |
+
self.conv_7x7_3 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
|
| 154 |
+
|
| 155 |
+
self.relu = ReLU()
|
| 156 |
+
|
| 157 |
+
def call(self, x):
|
| 158 |
+
conv_3x3 = self.conv_3x3(x)
|
| 159 |
+
|
| 160 |
+
conv_5x5_1 = self.conv_5x5_1(x)
|
| 161 |
+
conv_5x5 = self.conv_5x5_2(conv_5x5_1)
|
| 162 |
+
|
| 163 |
+
conv_7x7_2 = self.conv_7x7_2(conv_5x5_1)
|
| 164 |
+
conv_7x7 = self.conv_7x7_3(conv_7x7_2)
|
| 165 |
+
|
| 166 |
+
output = tf.concat([conv_3x3, conv_5x5, conv_7x7], axis=3)
|
| 167 |
+
output = self.relu(output)
|
| 168 |
+
|
| 169 |
+
return output
|
| 170 |
+
|
| 171 |
+
def get_config(self):
|
| 172 |
+
config = {
|
| 173 |
+
'out_ch': self.out_ch,
|
| 174 |
+
'wd': self.wd,
|
| 175 |
+
}
|
| 176 |
+
base_config = super(SSH, self).get_config()
|
| 177 |
+
return dict(list(base_config.items()) + list(config.items()))
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BboxHead(tf.keras.layers.Layer):
|
| 181 |
+
"""Bbox Head Layer"""
|
| 182 |
+
def __init__(self, num_anchor, wd, **kwargs):
|
| 183 |
+
super(BboxHead, self).__init__(**kwargs)
|
| 184 |
+
self.num_anchor = num_anchor
|
| 185 |
+
self.wd = wd
|
| 186 |
+
self.conv = Conv2D(filters=num_anchor * 4, kernel_size=1, strides=1)
|
| 187 |
+
|
| 188 |
+
def call(self, x):
|
| 189 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
| 190 |
+
x = self.conv(x)
|
| 191 |
+
|
| 192 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 4])
|
| 193 |
+
|
| 194 |
+
def get_config(self):
|
| 195 |
+
config = {
|
| 196 |
+
'num_anchor': self.num_anchor,
|
| 197 |
+
'wd': self.wd,
|
| 198 |
+
}
|
| 199 |
+
base_config = super(BboxHead, self).get_config()
|
| 200 |
+
return dict(list(base_config.items()) + list(config.items()))
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class LandmarkHead(tf.keras.layers.Layer):
|
| 204 |
+
"""Landmark Head Layer"""
|
| 205 |
+
def __init__(self, num_anchor, wd, name='LandmarkHead', **kwargs):
|
| 206 |
+
super(LandmarkHead, self).__init__(name=name, **kwargs)
|
| 207 |
+
self.num_anchor = num_anchor
|
| 208 |
+
self.wd = wd
|
| 209 |
+
self.conv = Conv2D(filters=num_anchor * 10, kernel_size=1, strides=1)
|
| 210 |
+
|
| 211 |
+
def call(self, x):
|
| 212 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
| 213 |
+
x = self.conv(x)
|
| 214 |
+
|
| 215 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 10])
|
| 216 |
+
|
| 217 |
+
def get_config(self):
|
| 218 |
+
config = {
|
| 219 |
+
'num_anchor': self.num_anchor,
|
| 220 |
+
'wd': self.wd,
|
| 221 |
+
}
|
| 222 |
+
base_config = super(LandmarkHead, self).get_config()
|
| 223 |
+
return dict(list(base_config.items()) + list(config.items()))
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class ClassHead(tf.keras.layers.Layer):
|
| 227 |
+
"""Class Head Layer"""
|
| 228 |
+
def __init__(self, num_anchor, wd, name='ClassHead', **kwargs):
|
| 229 |
+
super(ClassHead, self).__init__(name=name, **kwargs)
|
| 230 |
+
self.num_anchor = num_anchor
|
| 231 |
+
self.wd = wd
|
| 232 |
+
self.conv = Conv2D(filters=num_anchor * 2, kernel_size=1, strides=1)
|
| 233 |
+
|
| 234 |
+
def call(self, x):
|
| 235 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
| 236 |
+
x = self.conv(x)
|
| 237 |
+
|
| 238 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 2])
|
| 239 |
+
|
| 240 |
+
def get_config(self):
|
| 241 |
+
config = {
|
| 242 |
+
'num_anchor': self.num_anchor,
|
| 243 |
+
'wd': self.wd,
|
| 244 |
+
}
|
| 245 |
+
base_config = super(ClassHead, self).get_config()
|
| 246 |
+
return dict(list(base_config.items()) + list(config.items()))
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def RetinaFaceModel(cfg, training=False, iou_th=0.4, score_th=0.02,
|
| 250 |
+
name='RetinaFaceModel'):
|
| 251 |
+
"""Retina Face Model"""
|
| 252 |
+
input_size = cfg['input_size'] if training else None
|
| 253 |
+
wd = cfg['weights_decay']
|
| 254 |
+
out_ch = cfg['out_channel']
|
| 255 |
+
num_anchor = len(cfg['min_sizes'][0])
|
| 256 |
+
backbone_type = cfg['backbone_type']
|
| 257 |
+
|
| 258 |
+
# define model
|
| 259 |
+
x = inputs = Input([input_size, input_size, 3], name='input_image')
|
| 260 |
+
|
| 261 |
+
x = Backbone(backbone_type=backbone_type)(x)
|
| 262 |
+
|
| 263 |
+
fpn = FPN(out_ch=out_ch, wd=wd)(x)
|
| 264 |
+
|
| 265 |
+
features = [SSH(out_ch=out_ch, wd=wd)(f)
|
| 266 |
+
for i, f in enumerate(fpn)]
|
| 267 |
+
|
| 268 |
+
bbox_regressions = tf.concat(
|
| 269 |
+
[BboxHead(num_anchor, wd=wd)(f)
|
| 270 |
+
for i, f in enumerate(features)], axis=1)
|
| 271 |
+
landm_regressions = tf.concat(
|
| 272 |
+
[LandmarkHead(num_anchor, wd=wd, name=f'LandmarkHead_{i}')(f)
|
| 273 |
+
for i, f in enumerate(features)], axis=1)
|
| 274 |
+
classifications = tf.concat(
|
| 275 |
+
[ClassHead(num_anchor, wd=wd, name=f'ClassHead_{i}')(f)
|
| 276 |
+
for i, f in enumerate(features)], axis=1)
|
| 277 |
+
|
| 278 |
+
classifications = tf.keras.layers.Softmax(axis=-1)(classifications)
|
| 279 |
+
|
| 280 |
+
if training:
|
| 281 |
+
out = (bbox_regressions, landm_regressions, classifications)
|
| 282 |
+
else:
|
| 283 |
+
# only for batch size 1
|
| 284 |
+
preds = tf.concat( # [bboxes, landms, landms_valid, conf]
|
| 285 |
+
[bbox_regressions[0],
|
| 286 |
+
landm_regressions[0],
|
| 287 |
+
tf.ones_like(classifications[0, :, 0][..., tf.newaxis]),
|
| 288 |
+
classifications[0, :, 1][..., tf.newaxis]], 1)
|
| 289 |
+
priors = prior_box_tf((tf.shape(inputs)[1], tf.shape(inputs)[2]), cfg['min_sizes'], cfg['steps'], cfg['clip'])
|
| 290 |
+
decode_preds = decode_tf(preds, priors, cfg['variances'])
|
| 291 |
+
|
| 292 |
+
selected_indices = tf.image.non_max_suppression(
|
| 293 |
+
boxes=decode_preds[:, :4],
|
| 294 |
+
scores=decode_preds[:, -1],
|
| 295 |
+
max_output_size=tf.shape(decode_preds)[0],
|
| 296 |
+
iou_threshold=iou_th,
|
| 297 |
+
score_threshold=score_th)
|
| 298 |
+
|
| 299 |
+
out = tf.gather(decode_preds, selected_indices)
|
| 300 |
+
|
| 301 |
+
return Model(inputs, out, name=name), Model(inputs, [bbox_regressions, landm_regressions, classifications], name=name + '_bb_only')
|