File size: 8,137 Bytes
3bc6061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6507a8
 
 
 
 
 
 
3bc6061
 
 
 
 
 
 
1ad4019
 
 
e0c4f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad4019
 
 
 
 
e0c4f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad4019
3bc6061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
license: mit
library_name: transformers
pipeline_tag: text-generation
datasets:
- yulan-team/YuLan-Mini-Datasets
- HuggingFaceFW/fineweb-edu
- bigcode/the-stack-v2
- mlfoundations/dclm-baseline-1.0
- math-ai/AutoMathText
- gair-prox/open-web-math-pro
- RUC-AIBOX/long_form_thought_data_5k
- internlm/Lean-Workbook
- internlm/Lean-Github
- deepseek-ai/DeepSeek-Prover-V1
- ScalableMath/Lean-STaR-base
- ScalableMath/Lean-STaR-plus
- ScalableMath/Lean-CoT-base
- ScalableMath/Lean-CoT-plus
- opencsg/chinese-fineweb-edu
- liwu/MNBVC
- vikp/textbook_quality_programming
- HuggingFaceTB/smollm-corpus
- OpenCoder-LLM/opc-annealing-corpus
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
- XinyaoHu/AMPS_mathematica
- deepmind/math_dataset
- mrfakename/basic-math-10m
- microsoft/orca-math-word-problems-200k
- AI-MO/NuminaMath-CoT
- HuggingFaceTB/cosmopedia
- MU-NLPC/Calc-ape210k
- manu/project_gutenberg
- storytracer/LoC-PD-Books
- allenai/dolma
language:
- en
- zh
tags:
- code
- math
- TensorBlock
- GGUF
arxiv: 2412.17743
base_model: yulan-team/YuLan-Mini
model-index:
- name: YuLan-Mini
  results:
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: openai_humaneval
    metrics:
    - type: pass@1
      value: 0.64
      name: pass@1
      verified: false
  - task:
      type: text-generation
    dataset:
      name: MBPP
      type: mbpp
    metrics:
    - type: pass@1
      value: 0.659
      name: pass@1
      verified: false
  - task:
      type: text-generation
    dataset:
      name: MATH-500
      type: math-500
    metrics:
    - type: maj@1
      value: 0.378
      name: maj@1
      verified: false
  - task:
      type: text-generation
    dataset:
      name: GSM8K
      type: gsm8k
    metrics:
    - type: maj@1
      value: 0.684
      name: maj@1
      verified: false
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## yulan-team/YuLan-Mini - GGUF

This repo contains GGUF format model files for [yulan-team/YuLan-Mini](https://huggingface.co/yulan-team/YuLan-Mini).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template

```

<s>

    <|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|>

    <|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|>

    <|start_header_id|>assistant<|end_header_id|>
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [YuLan-Mini-Q2_K.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q2_K.gguf) | Q2_K | 1.468 GB | smallest, significant quality loss - not recommended for most purposes |
| [YuLan-Mini-Q3_K_S.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q3_K_S.gguf) | Q3_K_S | 1.463 GB | very small, high quality loss |
| [YuLan-Mini-Q3_K_M.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q3_K_M.gguf) | Q3_K_M | 1.560 GB | very small, high quality loss |
| [YuLan-Mini-Q3_K_L.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q3_K_L.gguf) | Q3_K_L | 1.606 GB | small, substantial quality loss |
| [YuLan-Mini-Q4_0.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q4_0.gguf) | Q4_0 | 1.463 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [YuLan-Mini-Q4_K_S.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q4_K_S.gguf) | Q4_K_S | 1.746 GB | small, greater quality loss |
| [YuLan-Mini-Q4_K_M.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q4_K_M.gguf) | Q4_K_M | 1.846 GB | medium, balanced quality - recommended |
| [YuLan-Mini-Q5_0.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q5_0.gguf) | Q5_0 | 1.742 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [YuLan-Mini-Q5_K_S.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q5_K_S.gguf) | Q5_K_S | 1.882 GB | large, low quality loss - recommended |
| [YuLan-Mini-Q5_K_M.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q5_K_M.gguf) | Q5_K_M | 1.969 GB | large, very low quality loss - recommended |
| [YuLan-Mini-Q6_K.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q6_K.gguf) | Q6_K | 2.580 GB | very large, extremely low quality loss |
| [YuLan-Mini-Q8_0.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q8_0.gguf) | Q8_0 | 2.580 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/YuLan-Mini-GGUF --include "YuLan-Mini-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/YuLan-Mini-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```