Update train_st_gooaq.py
Browse files- train_st_gooaq.py +87 -86
train_st_gooaq.py
CHANGED
|
@@ -1,87 +1,88 @@
|
|
| 1 |
-
# Copyright 2024 onwards Answer.AI, LightOn, and contributors
|
| 2 |
-
# License: Apache-2.0
|
| 3 |
-
|
| 4 |
-
import argparse
|
| 5 |
-
|
| 6 |
-
from datasets import load_dataset
|
| 7 |
-
from sentence_transformers import (
|
| 8 |
-
SentenceTransformer,
|
| 9 |
-
SentenceTransformerTrainer,
|
| 10 |
-
SentenceTransformerTrainingArguments,
|
| 11 |
-
)
|
| 12 |
-
from sentence_transformers.evaluation import NanoBEIREvaluator
|
| 13 |
-
from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
|
| 14 |
-
from sentence_transformers.training_args import BatchSamplers
|
| 15 |
-
|
| 16 |
-
def main():
|
| 17 |
-
# parse the lr & model name
|
| 18 |
-
parser = argparse.ArgumentParser()
|
| 19 |
-
parser.add_argument("--lr", type=float, default=8e-5)
|
| 20 |
-
parser.add_argument("--model_name", type=str, default="answerdotai/ModernBERT-base")
|
| 21 |
-
args = parser.parse_args()
|
| 22 |
-
lr = args.lr
|
| 23 |
-
model_name = args.model_name
|
| 24 |
-
model_shortname = model_name.split("/")[-1]
|
| 25 |
-
|
| 26 |
-
# 1. Load a model to finetune
|
| 27 |
-
model = SentenceTransformer(model_name)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
dataset
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
dev_evaluator(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
trainer
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
model
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
main()
|
|
|
|
| 1 |
+
# Copyright 2024 onwards Answer.AI, LightOn, and contributors
|
| 2 |
+
# License: Apache-2.0
|
| 3 |
+
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from sentence_transformers import (
|
| 8 |
+
SentenceTransformer,
|
| 9 |
+
SentenceTransformerTrainer,
|
| 10 |
+
SentenceTransformerTrainingArguments,
|
| 11 |
+
)
|
| 12 |
+
from sentence_transformers.evaluation import NanoBEIREvaluator
|
| 13 |
+
from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
|
| 14 |
+
from sentence_transformers.training_args import BatchSamplers
|
| 15 |
+
|
| 16 |
+
def main():
|
| 17 |
+
# parse the lr & model name
|
| 18 |
+
parser = argparse.ArgumentParser()
|
| 19 |
+
parser.add_argument("--lr", type=float, default=8e-5)
|
| 20 |
+
parser.add_argument("--model_name", type=str, default="answerdotai/ModernBERT-base")
|
| 21 |
+
args = parser.parse_args()
|
| 22 |
+
lr = args.lr
|
| 23 |
+
model_name = args.model_name
|
| 24 |
+
model_shortname = model_name.split("/")[-1]
|
| 25 |
+
|
| 26 |
+
# 1. Load a model to finetune
|
| 27 |
+
model = SentenceTransformer(model_name)
|
| 28 |
+
model.max_seq_length = 8192
|
| 29 |
+
|
| 30 |
+
# 2. Load a dataset to finetune on
|
| 31 |
+
dataset = load_dataset("sentence-transformers/gooaq", split="train")
|
| 32 |
+
dataset_dict = dataset.train_test_split(test_size=1_000, seed=12)
|
| 33 |
+
train_dataset = dataset_dict["train"]
|
| 34 |
+
eval_dataset = dataset_dict["test"]
|
| 35 |
+
|
| 36 |
+
# 3. Define a loss function
|
| 37 |
+
loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=128) # Increase mini_batch_size if you have enough VRAM
|
| 38 |
+
|
| 39 |
+
run_name = f"{model_shortname}-gooaq-{lr}"
|
| 40 |
+
# 4. (Optional) Specify training arguments
|
| 41 |
+
args = SentenceTransformerTrainingArguments(
|
| 42 |
+
# Required parameter:
|
| 43 |
+
output_dir=f"output/{model_shortname}/{run_name}",
|
| 44 |
+
# Optional training parameters:
|
| 45 |
+
num_train_epochs=1,
|
| 46 |
+
per_device_train_batch_size=2048,
|
| 47 |
+
per_device_eval_batch_size=2048,
|
| 48 |
+
learning_rate=lr,
|
| 49 |
+
warmup_ratio=0.05,
|
| 50 |
+
fp16=False, # Set to False if GPU can't handle FP16
|
| 51 |
+
bf16=True, # Set to True if GPU supports BF16
|
| 52 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # (Cached)MultipleNegativesRankingLoss benefits from no duplicates
|
| 53 |
+
# Optional tracking/debugging parameters:
|
| 54 |
+
eval_strategy="steps",
|
| 55 |
+
eval_steps=50,
|
| 56 |
+
save_strategy="steps",
|
| 57 |
+
save_steps=50,
|
| 58 |
+
save_total_limit=2,
|
| 59 |
+
logging_steps=10,
|
| 60 |
+
run_name=run_name, # Used in `wandb`, `tensorboard`, `neptune`, etc. if installed
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# 5. (Optional) Create an evaluator & evaluate the base model
|
| 64 |
+
dev_evaluator = NanoBEIREvaluator(dataset_names=["NQ", "MSMARCO"])
|
| 65 |
+
dev_evaluator(model)
|
| 66 |
+
|
| 67 |
+
# 6. Create a trainer & train
|
| 68 |
+
trainer = SentenceTransformerTrainer(
|
| 69 |
+
model=model,
|
| 70 |
+
args=args,
|
| 71 |
+
train_dataset=train_dataset,
|
| 72 |
+
eval_dataset=eval_dataset,
|
| 73 |
+
loss=loss,
|
| 74 |
+
evaluator=dev_evaluator,
|
| 75 |
+
)
|
| 76 |
+
trainer.train()
|
| 77 |
+
|
| 78 |
+
# 7. (Optional) Evaluate the trained model on the evaluator after training
|
| 79 |
+
dev_evaluator(model)
|
| 80 |
+
|
| 81 |
+
# 8. Save the model
|
| 82 |
+
model.save_pretrained(f"output/{model_shortname}/{run_name}/final")
|
| 83 |
+
|
| 84 |
+
# 9. (Optional) Push it to the Hugging Face Hub
|
| 85 |
+
model.push_to_hub(run_name, private=False)
|
| 86 |
+
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
main()
|