Upload convert.py
Browse files- convert.py +17 -0
convert.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import segmentation_models_pytorch as smp
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
paths = [
|
| 5 |
+
"2_Class_CCBY_FTW_Pretrained.ckpt",
|
| 6 |
+
"2_Class_FULL_FTW_Pretrained.ckpt",
|
| 7 |
+
"3_Class_CCBY_FTW_Pretrained.ckpt",
|
| 8 |
+
"3_Class_FULL_FTW_Pretrained.ckpt",
|
| 9 |
+
]
|
| 10 |
+
classes = [2, 2, 3, 3]
|
| 11 |
+
for num_classes, path in zip(classes, paths):
|
| 12 |
+
state_dict = torch.load(path, weights_only=True, map_location="cpu")["state_dict"]
|
| 13 |
+
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
|
| 14 |
+
del state_dict["criterion.weight"]
|
| 15 |
+
model = smp.Unet(encoder_name="efficientnet-b3", in_channels=8, classes=num_classes, encoder_weights=None)
|
| 16 |
+
model.load_state_dict(state_dict)
|
| 17 |
+
torch.save(model.state_dict(), path.replace(".ckpt", ".pth"))
|