turboderp commited on
Commit
25a2945
·
1 Parent(s): 37dfcdf

Upload 12 files

Browse files
README.md CHANGED
@@ -6,50 +6,22 @@ language:
6
  - de
7
  - es
8
  - en
9
- widget:
10
- - text: "[INST] You are a pirate chatbot who always responds with Arr and pirate speak!\nThere's a llama on my lawn, how can I get rid of him? [/INST]"
11
- output:
12
- text: "Arr, shiver me timbers! Ye have a llama on yer lawn, ye say? Well, that be a new one for me! Here's what I'd suggest, arr:\n\n1. Firstly, ensure yer safety. Llamas may look gentle, but they can be protective if they feel threatened.\n2. Try to make the area less appealing to the llama. Remove any food sources or water that might be attracting it.\n3. Contact local animal control or a wildlife rescue organization. They be the experts and can provide humane ways to remove the llama from yer property.\n4. If ye have any experience with animals, you could try to gently herd the llama towards a nearby field or open space. But be careful, arr!\n\nRemember, arr, it be important to treat the llama with respect and care. It be a creature just trying to survive, like the rest of us."
13
  ---
14
  # Model Card for Mixtral-8x7B
15
- The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
16
 
17
  For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
18
 
19
  ## Warning
20
  This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
21
 
22
- ## Instruction format
23
-
24
- This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
25
-
26
- The template used to build a prompt for the Instruct model is defined as follows:
27
- ```
28
- <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
29
- ```
30
- Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
31
-
32
- As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:
33
- ```python
34
- def tokenize(text):
35
- return tok.encode(text, add_special_tokens=False)
36
-
37
- [BOS_ID] +
38
- tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
39
- tokenize(BOT_MESSAGE_1) + [EOS_ID] +
40
-
41
- tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
42
- tokenize(BOT_MESSAGE_N) + [EOS_ID]
43
- ```
44
-
45
- In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space.
46
-
47
  ## Run the model
48
 
 
49
  ```python
50
  from transformers import AutoModelForCausalLM, AutoTokenizer
51
 
52
- model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
53
  tokenizer = AutoTokenizer.from_pretrained(model_id)
54
 
55
  model = AutoModelForCausalLM.from_pretrained(model_id)
@@ -74,7 +46,7 @@ Note `float16` precision only works on GPU devices
74
  + import torch
75
  from transformers import AutoModelForCausalLM, AutoTokenizer
76
 
77
- model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
78
  tokenizer = AutoTokenizer.from_pretrained(model_id)
79
 
80
  + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
@@ -96,7 +68,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
96
  + import torch
97
  from transformers import AutoModelForCausalLM, AutoTokenizer
98
 
99
- model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
100
  tokenizer = AutoTokenizer.from_pretrained(model_id)
101
 
102
  + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
@@ -118,7 +90,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
118
  + import torch
119
  from transformers import AutoModelForCausalLM, AutoTokenizer
120
 
121
- model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
122
  tokenizer = AutoTokenizer.from_pretrained(model_id)
123
 
124
  + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
@@ -131,11 +103,8 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
131
  ```
132
  </details>
133
 
134
- ## Limitations
135
-
136
- The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
137
- It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
138
- make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
139
 
140
  # The Mistral AI Team
141
  Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
 
6
  - de
7
  - es
8
  - en
 
 
 
 
9
  ---
10
  # Model Card for Mixtral-8x7B
11
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
12
 
13
  For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
14
 
15
  ## Warning
16
  This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ## Run the model
19
 
20
+
21
  ```python
22
  from transformers import AutoModelForCausalLM, AutoTokenizer
23
 
24
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
25
  tokenizer = AutoTokenizer.from_pretrained(model_id)
26
 
27
  model = AutoModelForCausalLM.from_pretrained(model_id)
 
46
  + import torch
47
  from transformers import AutoModelForCausalLM, AutoTokenizer
48
 
49
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
50
  tokenizer = AutoTokenizer.from_pretrained(model_id)
51
 
52
  + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
 
68
  + import torch
69
  from transformers import AutoModelForCausalLM, AutoTokenizer
70
 
71
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
72
  tokenizer = AutoTokenizer.from_pretrained(model_id)
73
 
74
  + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
 
90
  + import torch
91
  from transformers import AutoModelForCausalLM, AutoTokenizer
92
 
93
+ model_id = "mistralai/Mixtral-8x7B-v0.1"
94
  tokenizer = AutoTokenizer.from_pretrained(model_id)
95
 
96
  + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
 
103
  ```
104
  </details>
105
 
106
+ ## Notice
107
+ Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.
 
 
 
108
 
109
  # The Mistral AI Team
110
  Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
config.json CHANGED
@@ -20,7 +20,7 @@
20
  "rms_norm_eps": 1e-05,
21
  "rope_theta": 1000000.0,
22
  "router_aux_loss_coef": 0.02,
23
- "sliding_window": 4096,
24
  "tie_word_embeddings": false,
25
  "torch_dtype": "bfloat16",
26
  "transformers_version": "4.36.0.dev0",
 
20
  "rms_norm_eps": 1e-05,
21
  "rope_theta": 1000000.0,
22
  "router_aux_loss_coef": 0.02,
23
+ "sliding_window": null,
24
  "tie_word_embeddings": false,
25
  "torch_dtype": "bfloat16",
26
  "transformers_version": "4.36.0.dev0",
generation_config(1).json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.0.dev0"
6
+ }
output-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:80f0ebfb62dea839ff76efbc72accf29426f52fe041e6208c180578112b0cf28
3
- size 8581503776
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f68f7563643d2b28fd9aae0fb347987cc9854cedaa2dd0b180842e50e6ae089
3
+ size 8580184024
output-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d4f392e9c65e0d90d569fa958a74834ce1626ab87e649f3b1f2a8b4a1d5a3394
3
- size 5744608776
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79bc6287bc244ff0ba40ad2075c672bccd48c9a2c7c5e96bc0a07e28ae19db80
3
+ size 5745889064
tokenizer_config.json CHANGED
@@ -38,6 +38,5 @@
38
  "spaces_between_special_tokens": false,
39
  "tokenizer_class": "LlamaTokenizer",
40
  "unk_token": "<unk>",
41
- "use_default_system_prompt": false,
42
- "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
43
  }
 
38
  "spaces_between_special_tokens": false,
39
  "tokenizer_class": "LlamaTokenizer",
40
  "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
 
42
  }