|
|
import torch |
|
|
import numpy as np |
|
|
from typing import List, Tuple |
|
|
from tqdm import tqdm |
|
|
from axengine import InferenceSession |
|
|
from ml_dtypes import bfloat16 |
|
|
|
|
|
|
|
|
class InferManager: |
|
|
def __init__(self, config, model_dir): |
|
|
|
|
|
self.config = config |
|
|
self.max_seq_len = 2559 |
|
|
self.kv_dim = config.hidden_size // config.num_attention_heads * config.num_key_value_heads |
|
|
|
|
|
self.k_caches = [ |
|
|
np.zeros((1, self.max_seq_len, self.kv_dim), dtype=bfloat16) |
|
|
for _ in range(config.num_hidden_layers) |
|
|
] |
|
|
self.v_caches = [ |
|
|
np.zeros((1, self.max_seq_len, self.kv_dim), dtype=bfloat16) |
|
|
for _ in range(config.num_hidden_layers) |
|
|
] |
|
|
|
|
|
self.decoder_sessions = [] |
|
|
for layer_idx in tqdm(range(config.num_hidden_layers), desc="Init InferenceSession"): |
|
|
session = InferenceSession( |
|
|
f"{model_dir}/llama_p128_l{layer_idx}_together.axmodel" |
|
|
) |
|
|
self.decoder_sessions.append(session) |
|
|
self.post_process_session = InferenceSession( |
|
|
f"{model_dir}/llama_post.axmodel" |
|
|
) |
|
|
print("Model loaded successfully!") |
|
|
|
|
|
@staticmethod |
|
|
def _top_p(probs: np.ndarray, p: float) -> np.ndarray: |
|
|
sorted_indices = np.argsort(probs) |
|
|
filtered = probs.copy() |
|
|
cumulative = 0 |
|
|
for idx in sorted_indices[::-1]: |
|
|
if cumulative >= p: |
|
|
filtered[idx] = 0 |
|
|
cumulative += filtered[idx] |
|
|
return filtered / cumulative |
|
|
|
|
|
@staticmethod |
|
|
def _softmax(logits: np.ndarray) -> np.ndarray: |
|
|
logits = logits - logits.max() |
|
|
exp_logits = np.exp(logits) |
|
|
return (exp_logits / np.sum(exp_logits)).astype(np.float64) |
|
|
|
|
|
def post_process(self, logits, top_k=1, top_p=0.9, temperature=0.6): |
|
|
logits = logits.astype(np.float32).flatten() |
|
|
candidate_indices = np.argpartition(logits, -top_k)[-top_k:] |
|
|
candidate_logits = logits[candidate_indices] / temperature |
|
|
candidate_probs = self._softmax(candidate_logits) |
|
|
candidate_probs = self._top_p(candidate_probs, top_p) |
|
|
candidate_probs = candidate_probs.astype(np.float64) / candidate_probs.sum() |
|
|
chosen_idx = np.random.multinomial(1, candidate_probs).argmax() |
|
|
next_token = candidate_indices[chosen_idx] |
|
|
return next_token, candidate_indices, candidate_probs |
|
|
|
|
|
def gen_slice_indices(self, token_len, prefill=128, expand=128): |
|
|
remaining = max(0, token_len - prefill) |
|
|
extra_blocks = (remaining + expand - 1) // expand |
|
|
return list(range(extra_blocks + 1)) |
|
|
|
|
|
def prefill( |
|
|
self, |
|
|
tokenizer, |
|
|
token_ids, |
|
|
embed_data, |
|
|
slice_len=128, |
|
|
): |
|
|
""" |
|
|
Prefill step for chunked inference. |
|
|
""" |
|
|
seq_len = len(token_ids) |
|
|
slice_indices = [i for i in range(seq_len // slice_len + 1)] |
|
|
print(f"slice_indices: {slice_indices}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_prefill_len = slice_len * (slice_indices[-1] + 1) |
|
|
|
|
|
|
|
|
|
|
|
if total_prefill_len > 0: |
|
|
for slice_idx in slice_indices: |
|
|
indices = np.arange( |
|
|
slice_idx * slice_len, |
|
|
(slice_idx + 1) * slice_len, |
|
|
dtype=np.uint32 |
|
|
).reshape((1, slice_len)) |
|
|
|
|
|
mask = ( |
|
|
np.zeros((1, slice_len, slice_len * (slice_idx + 1))) |
|
|
- 65536 |
|
|
) |
|
|
data = np.zeros((1, slice_len, self.config.hidden_size)).astype(bfloat16) |
|
|
for i, t in enumerate( |
|
|
range( |
|
|
slice_idx * slice_len, |
|
|
(slice_idx + 1) * slice_len, |
|
|
) |
|
|
): |
|
|
if t < len(token_ids): |
|
|
mask[:, i, : slice_idx * slice_len + i + 1] = 0 |
|
|
data[:, i : i + 1, :] = ( |
|
|
embed_data[t] |
|
|
.reshape((1, 1, self.config.hidden_size)) |
|
|
.astype(bfloat16) |
|
|
) |
|
|
|
|
|
remain_len = ( |
|
|
seq_len - slice_idx * slice_len |
|
|
if slice_idx == slice_indices[-1] |
|
|
else slice_len |
|
|
) |
|
|
mask = mask.astype(bfloat16) |
|
|
for layer_idx in range(self.config.num_hidden_layers): |
|
|
input_feed = { |
|
|
"K_cache": ( |
|
|
self.k_caches[layer_idx][:, 0 : slice_len * slice_idx, :] |
|
|
if slice_idx |
|
|
else np.zeros((1, 1, self.config.hidden_size), dtype=bfloat16) |
|
|
), |
|
|
"V_cache": ( |
|
|
self.v_caches[layer_idx][:, 0 : slice_len * slice_idx, :] |
|
|
if slice_idx |
|
|
else np.zeros((1, 1, self.config.hidden_size), dtype=bfloat16) |
|
|
), |
|
|
"indices": indices, |
|
|
"input": data, |
|
|
"mask": mask, |
|
|
} |
|
|
|
|
|
outputs = self.decoder_sessions[layer_idx].run(None, input_feed, shape_group=slice_idx + 1) |
|
|
self.k_caches[layer_idx][ |
|
|
:, |
|
|
slice_idx * slice_len : slice_idx * slice_len + remain_len, |
|
|
:, |
|
|
] = outputs[0][:, :remain_len, :] |
|
|
self.v_caches[layer_idx][ |
|
|
:, |
|
|
slice_idx * slice_len : slice_idx * slice_len + remain_len, |
|
|
:, |
|
|
] = outputs[1][:, :remain_len, :] |
|
|
data = outputs[2] |
|
|
|
|
|
print("Slice prefill done:", slice_idx) |
|
|
post_out = self.post_process_session.run( |
|
|
None, |
|
|
{ |
|
|
"input": data[ |
|
|
:, seq_len - (len(slice_indices) - 1) * slice_len - 1, None, : |
|
|
] |
|
|
} |
|
|
)[0] |
|
|
next_token, possible_tokens, possible_probs = self.post_process(post_out) |
|
|
possible_decoded = [tokenizer.decode([t]) for t in possible_tokens] |
|
|
possible_probs_str = [str((t, p)) for t, p in zip(possible_decoded, possible_probs)] |
|
|
token_ids.append(next_token) |
|
|
return token_ids |
|
|
|
|
|
def decode( |
|
|
self, |
|
|
tokenizer, |
|
|
token_ids, |
|
|
embed_matrix, |
|
|
prefill_len=128, |
|
|
slice_len=128 |
|
|
): |
|
|
|
|
|
print("answer >>", tokenizer.decode(token_ids[-1], skip_special_tokens=True), end='', flush=True) |
|
|
self.max_seq_len = 2559 |
|
|
mask = np.zeros((1, 1, self.max_seq_len + 1), dtype=np.float32).astype(bfloat16) |
|
|
mask[:, :, :self.max_seq_len] -= 65536 |
|
|
seq_len = len(token_ids) - 1 |
|
|
if prefill_len > 0: |
|
|
mask[:, :, :seq_len] = 0 |
|
|
for step_idx in range(self.max_seq_len): |
|
|
if prefill_len > 0 and step_idx < seq_len: |
|
|
continue |
|
|
|
|
|
cur_token = token_ids[step_idx] |
|
|
indices = np.array([step_idx], np.uint32).reshape((1, 1)) |
|
|
data = embed_matrix[cur_token, :].reshape((1, 1, self.config.hidden_size)).astype(bfloat16) |
|
|
for layer_idx in range(self.config.num_hidden_layers): |
|
|
input_feed = { |
|
|
"K_cache": self.k_caches[layer_idx], |
|
|
"V_cache": self.v_caches[layer_idx], |
|
|
"indices": indices, |
|
|
"input": data, |
|
|
"mask": mask, |
|
|
} |
|
|
outputs = self.decoder_sessions[layer_idx].run(None, input_feed, shape_group=0) |
|
|
self.k_caches[layer_idx][:, step_idx, :] = outputs[0][:, :, :] |
|
|
self.v_caches[layer_idx][:, step_idx, :] = outputs[1][:, :, :] |
|
|
data = outputs[2] |
|
|
mask[..., step_idx] = 0 |
|
|
if step_idx < seq_len - 1: |
|
|
continue |
|
|
else: |
|
|
post_out = self.post_process_session.run(None, {"input": data})[0] |
|
|
next_token, possible_tokens, possible_probs = self.post_process(post_out) |
|
|
token_ids.append(next_token) |
|
|
if next_token == tokenizer.eos_token_id and next_token > seq_len: |
|
|
break |
|
|
print(tokenizer.decode(next_token, skip_special_tokens=True), end='', flush=True) |
|
|
|
|
|
|