SW2-RHS-DA / README.md
Augusto777's picture
End of training
93cda05 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: SW2-RHS-DA
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8598130841121495

SW2-RHS-DA

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4541
  • Accuracy: 0.8598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0538 0.99 35 1.2866 0.4112
0.7464 2.0 71 0.6780 0.5888
0.7061 2.99 106 0.6851 0.5888
0.6951 4.0 142 0.6742 0.5888
0.6928 4.99 177 0.6917 0.4486
0.683 6.0 213 0.6531 0.5794
0.7013 6.99 248 0.7000 0.4486
0.6921 8.0 284 0.7519 0.5514
0.6166 8.99 319 0.5947 0.6822
0.6128 10.0 355 0.5434 0.7850
0.5737 10.99 390 0.5533 0.7570
0.5376 12.0 426 0.5347 0.7103
0.5056 12.99 461 0.4949 0.7664
0.5396 14.0 497 0.5151 0.7477
0.4826 14.99 532 0.5669 0.7196
0.4269 16.0 568 0.4796 0.7570
0.5004 16.99 603 0.4489 0.8037
0.4116 18.0 639 0.4362 0.8224
0.3776 18.99 674 0.5300 0.7570
0.3646 20.0 710 0.4175 0.8037
0.3683 20.99 745 0.4700 0.8224
0.3277 22.0 781 0.4707 0.8131
0.3534 22.99 816 0.5240 0.8131
0.3083 24.0 852 0.5012 0.8131
0.2829 24.99 887 0.4421 0.8318
0.2564 26.0 923 0.4548 0.8224
0.3136 26.99 958 0.4374 0.8318
0.2443 28.0 994 0.5277 0.8131
0.258 28.99 1029 0.4601 0.8224
0.2673 30.0 1065 0.4520 0.8318
0.2233 30.99 1100 0.4541 0.8598
0.2276 32.0 1136 0.4247 0.8505
0.2653 32.99 1171 0.4091 0.8505
0.2007 34.0 1207 0.4719 0.8505
0.2082 34.99 1242 0.4624 0.8411
0.1794 36.0 1278 0.4856 0.8318
0.1987 36.99 1313 0.4904 0.8224
0.2066 38.0 1349 0.4741 0.8505
0.1972 38.99 1384 0.4530 0.8505
0.2319 39.44 1400 0.4536 0.8505

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0