llama2-7b-coding-fft

This model is a Full Fine-Tuned (FFT) version of LLaMA2-7B on coding datasets, trained as part of replicating the Mask Fine-Tuning (MFT) paper.

Model Details

  • Base Model: meta-llama/Llama-2-7b-hf
  • Training Type: Full Fine-Tuning (FFT)
  • Domain: Coding
  • Hardware: TPU v4-8
  • Training Framework: PyTorch + torch_xla

Training Data

The model was trained on 30,000 samples from three coding datasets (matching the paper):

  • Tulu 3 Persona Python: 10,000 samples
  • Evol CodeAlpaca: 10,000 samples
  • Code-Alpaca: 10,000 samples

Training Configuration

  • Epochs: 2
  • Sequence Length: 4096
  • Learning Rate: 2e-5
  • Batch Size: 8 (effective)
  • Optimizer: AdamW
  • LR Scheduler: Linear with warmup
  • Mixed Precision: bfloat16

Training Results

  • Final Loss: 0.15353151041666666
  • Final Perplexity: 1.1673020833333334
  • Training Time: ~7 hours on TPU v4-8
  • Total Steps: 7500

Loss Progression

  • Epoch 0: 0.42591484375
  • Epoch 1: 0.15353151041666666

Intended Use

This model serves as the FFT baseline for the Mask Fine-Tuning paper replication. It will be evaluated on:

  • HumanEval (code generation benchmark)
  • Target: Match paper's FFT baseline of 29.3%

Evaluation

Evaluation on HumanEval is pending. Results will be updated here once available.

Citation

If you use this model, please cite the original MFT paper:

@article{mft2025,
  title={Mask Fine-Tuning},
  author={[Authors from paper]},
  journal={arXiv preprint arXiv:2503.22764v1},
  year={2025}
}

Reproducibility

Training configuration and code available at: GitHub Repository

License

This model inherits the LLaMA 2 Community License from the base model.

Downloads last month
6
Safetensors
Model size
2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Chrisfrancisque/llama2-7b-coding-fft

Finetuned
(1086)
this model