You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.12.2

base_model: Coloss/Qwen3-8B-Instruct
#/leonardo_work/EUHPC_A04_045/training/model-fp32 
#Coloss/Qwen3-8B-Instruct

# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

strict: false

#resume_from_checkpoint:  /leonardo_work/EUHPC_A04_045/training/ale_outputs/pluto-8B-sft/checkpoint-4040 #
#auto_resume_from_checkpoints: true

#resume_from_checkpoint:  /leonardo_work/EUHPC_A04_045/training/ale_outputs/pluto-8B-sft-32
#auto_resume_from_checkpoints: true

plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_fused_linear_cross_entropy: true
liger_cross_entropy: false # Explicitly disabled to ensure the Fused version takes over
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true   

    
    
#liger_cross_entropy: true
#liger_rms_norm: true
#liger_glu_activation: true
#liger_layer_norm: true


#chat_template: qwen3
datasets:
  - path: Coloss/Omnia-v5-Nesso
    type: chat_template
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

#dataset_prepared_path: ./ale_outputs/tokenized-omni-v5-v.2 
dataset_prepared_path: /leonardo_work/EUHPC_A04_045/training/ale_outputs/tokenized-omnia-v6-nesso

      
val_set_size: 0.0005
output_dir: ./ale_outputs/pluto-8B-sft-v0.2

#do_bench_eval: true
#bench_dataset: /leonardo_work/EUHPC_A04_045/training/examples/qwen3/eval_mix_train.json

sequence_len: 8000
excess_length_strategy: truncate
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true


gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
#max_steps: 50
optimizer: adamw_torch_fused   #adamw_bnb_8bit #adamw_torch_fused
lr_scheduler: cosine
learning_rate: 4e-5

bf16: auto #auto
fp16: false

tf32: true

wandb_mode: "offline"
wandb_project: pluto-8b
wandb_entity: mii-llm
wandb_name: pluto-8b-sft-v0.2

#gradient_checkpointing: true
#gradient_checkpointing_kwargs:
#  use_reentrant: false

logging_steps: 1

sdp_attention: false
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 5
saves_per_epoch: 5
save_total_limit: 5
weight_decay: 0.0


fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_offload_optimizer: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT  #SHARDED_STATE_DICT #FULL_STATE_DICT
  fsdp_activation_checkpointing: true

#fsdp:
#  - full_shard
#  - auto_wrap
#fsdp_config:
#  fsdp_limit_all_gathers: true
#  fsdp_sync_module_states: true
#  fsdp_offload_params: true
#  fsdp_use_orig_params: false
#  fsdp_cpu_ram_efficient_loading: true
  
  # ADD THIS LINE:
#  fsdp_offload_optimizer: true
  
#  fsdp_use_orig_params: false
#  fsdp_cpu_ram_efficient_loading: true
#  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#  fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
#  fsdp_state_dict_type: FULL_STATE_DICT
#  fsdp_sharding_strategy: FULL_SHARD

special_tokens:

ale_outputs/pluto-8B-sft-v0.2

This model is a fine-tuned version of Coloss/Qwen3-8B-Instruct on the Coloss/Omnia-v5-Nesso dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6555
  • Memory/max Mem Active(gib): 48.58
  • Memory/max Mem Allocated(gib): 47.86
  • Memory/device Mem Reserved(gib): 53.4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 32
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 195
  • training_steps: 1950

Training results

Training Loss Epoch Step Validation Loss Mem Active(gib) Mem Allocated(gib) Mem Reserved(gib)
No log 0 0 1.3858 48.57 47.85 49.2
0.7248 0.1999 195 0.7236 48.58 47.86 53.4
0.6917 0.3999 390 0.7014 48.58 47.86 53.4
0.6648 0.5998 585 0.6863 48.58 47.86 53.4
0.6738 0.7998 780 0.6747 48.58 47.86 53.4
0.6397 0.9997 975 0.6659 48.58 47.86 53.4
0.6131 1.1989 1170 0.6633 48.58 47.86 53.4
0.5895 1.3989 1365 0.6609 48.58 47.86 53.4
0.5819 1.5988 1560 0.6583 48.58 47.86 53.4
0.5996 1.7988 1755 0.6565 48.58 47.86 53.4
0.584 1.9987 1950 0.6555 48.58 47.86 53.4

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.6.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
13
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Coloss/Pluto-8B-sft-v0.2

Finetuned
(2)
this model
Quantizations
1 model