Qwen3-0.6B Terminal Command Generator - LoRA Adapters
This repository contains LoRA adapters for generating terminal commands from natural language instructions.
Model Description
- Base Model: Qwen/Qwen3-0.6B
- Fine-tuning Method: QLoRA (4-bit quantization + LoRA)
- Task: Natural language to terminal command generation
- Supported OS: Linux, Windows, macOS
Performance
| Metric | Score |
|---|---|
| Exact Match Accuracy | ~93-97% |
| Fuzzy Match Accuracy | ~94-98% |
Quick Start
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load base model and apply LoRA adapters
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-0.6B")
model = PeftModel.from_pretrained(base_model, "Eng-Elias/qwen3-0.6b-terminal-instruct-lora")
tokenizer = AutoTokenizer.from_pretrained("Eng-Elias/qwen3-0.6b-terminal-instruct-lora")
# Generate command
def generate_command(instruction, os_tag="[LINUX]"):
prompt = f"### Instruction:\n{instruction}\n\n### Input:\n{os_tag}\n\n### Response:\n"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=False)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### Response:")[-1].strip()
# Example usage
print(generate_command("List all files including hidden ones", "[LINUX]"))
# Output: ls -a
Supported Commands
The model can generate commands for various tasks including:
- File Operations: list, copy, move, delete, find files
- Directory Operations: create, remove, navigate directories
- System Information: disk usage, memory, processes
- Text Processing: grep, sed, awk operations
- Network: ping, curl, wget, netstat
- Compression: tar, zip, gzip operations
- And more...
Input Format
The model uses an Alpaca-style prompt format:
### Instruction:
{natural language description}
### Input:
{OS tag: [LINUX], [WINDOWS], [MAC], or JSON request}
### Response:
{generated command}
OS-Specific Commands
# Linux
generate_command("Show disk usage", "[LINUX]") # df -h
# Windows
generate_command("Show disk usage", "[WINDOWS]") # wmic logicaldisk get size,freespace
# macOS
generate_command("Show disk usage", "[MAC]") # df -h
JSON Output (All OS)
generate_command("Delete file named temp.txt", "Return the command for all operating systems as JSON")
# {"description": "Delete file named temp.txt", "linux": "rm temp.txt", "windows": "del temp.txt", "mac": "rm temp.txt"}
Training Details
- Dataset: Custom terminal command dataset with 10000+ examples
- Training Steps: ~1800
- LoRA Rank (r): 16
- LoRA Alpha: 32
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Learning Rate: 2e-4
- Batch Size: 4
- Gradient Accumulation: 4
Related Models
- Merged Model: Eng-Elias/qwen3-0.6b-terminal-instruct
Experiment Tracking
Training metrics and hyperparameters are logged to Weights & Biases:
- Project: qwen3-terminal-instruct
- Run: qwen3-0.6b-terminal-20251230_2244
- Dashboard: View on W&B
Limitations
- Commands are based on common usage patterns; complex or obscure commands may not be accurate
- The model may occasionally generate slightly different but functionally equivalent commands
- JSON output format is consistent but may vary in structure for edge cases
- Trained primarily on English instructions
License
This project is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
You are free to:
- Share โ copy and redistribute the material in any medium or format
- Adapt โ remix, transform, and build upon the material
Under the following terms:
- Attribution โ You must give appropriate credit
- NonCommercial โ You may not use the material for commercial purposes
- ShareAlike โ If you remix, transform, or build upon the material, you must distribute your contributions under the same license
Full license: https://creativecommons.org/licenses/by-nc-sa-4.0/legalcode
Citation
@misc{qwen3-terminal-instruct,
author = {Eng-Elias},
title = {Qwen3-0.6B Terminal Command Generator},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/Eng-Elias/qwen3-0.6b-terminal-instruct-lora}
}
Acknowledgments
- Qwen Team for the base model
- Hugging Face for the transformers and PEFT libraries
- Downloads last month
- -