|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Tuple, Union, List |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from einops import rearrange |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
QuestionAnsweringModelOutput, |
|
|
SequenceClassifierOutputWithPast, |
|
|
TokenClassifierOutput, |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging |
|
|
from configuration_sdar import SDARConfig |
|
|
from fused_linear_diffusion_cross_entropy import FusedLinearDiffusionCrossEntropyLoss |
|
|
|
|
|
from flash_attn.ops.triton.layer_norm import rms_norm_fn as flash_rms_norm |
|
|
|
|
|
import torch.nn.functional as F |
|
|
try: |
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
except: |
|
|
pass |
|
|
|
|
|
try: |
|
|
from liger_kernel.ops.swiglu import LigerSiLUMulFunction |
|
|
liger_kernel_is_available = True |
|
|
except ImportError: |
|
|
liger_kernel_is_available = False |
|
|
|
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
|
from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention |
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def modify_padded_position_ids_2d(position_ids: torch.LongTensor) -> torch.LongTensor: |
|
|
""" |
|
|
使用完全向量化的 PyTorch 操作修改一个 batch 的 packed position_ids。 |
|
|
这个函数假设输入是一个 2D Tensor,形状为 (batch_size, sequence_length)。 |
|
|
它会独立地处理 batch 中的每一行。 |
|
|
|
|
|
Args: |
|
|
position_ids: 二维 PyTorch Tensor, shape (batch_size, sequence_length). |
|
|
|
|
|
Returns: |
|
|
修改后的 position_ids Tensor, shape (batch_size, sequence_length). |
|
|
""" |
|
|
if position_ids.dim() != 2: |
|
|
raise ValueError(f"Input tensor must be 2D, but got {position_ids.dim()} dimensions.") |
|
|
|
|
|
batch_size, seq_len = position_ids.shape |
|
|
device = position_ids.device |
|
|
|
|
|
col_indices = torch.arange(seq_len, device=device, dtype=position_ids.dtype).expand(batch_size, -1) |
|
|
mask = (position_ids != 0) |
|
|
|
|
|
masked_indices = col_indices * mask |
|
|
last_nonzero_idx = torch.max(masked_indices, dim=1).values |
|
|
has_nonzero = torch.any(mask, dim=1) |
|
|
pad_start_idx = torch.where(has_nonzero, last_nonzero_idx + 1, torch.tensor(0, device=device, dtype=position_ids.dtype)) |
|
|
|
|
|
padding_mask = col_indices >= pad_start_idx.unsqueeze(1) |
|
|
new_pad_values = col_indices - pad_start_idx.unsqueeze(1) |
|
|
position_ids = torch.where(padding_mask, new_pad_values, position_ids) |
|
|
|
|
|
return position_ids |
|
|
|
|
|
|
|
|
def calculate_token_nums(position_ids: torch.Tensor): |
|
|
""" |
|
|
使用 PyTorch 高效计算一个批次中每个打包序列的长度。 |
|
|
|
|
|
Args: |
|
|
position_ids (torch.Tensor): 一个 2D Tensor,形状为 (batch_size, sequence_length)。 |
|
|
例如:tensor([[0,1,2,3,4,0,1,2,3,4,5,0,1,2,3,0,0,0]]) |
|
|
Returns: |
|
|
list[list[int]]: 一个嵌套列表,包含每个批次项中各个序列的长度。 |
|
|
例如:[[5, 6, 4, 1, 1, 1]] |
|
|
""" |
|
|
|
|
|
if position_ids.dim() != 2: |
|
|
raise ValueError(f"输入必须是 2D Tensor,但得到了 {position_ids.dim()}D") |
|
|
|
|
|
all_lengths = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for pids_row in position_ids: |
|
|
|
|
|
seq_len = pids_row.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zero_indices = torch.nonzero(pids_row == 0).flatten() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
split_points = torch.cat([ |
|
|
zero_indices, |
|
|
torch.tensor([seq_len], device=pids_row.device, dtype=zero_indices.dtype) |
|
|
]) |
|
|
|
|
|
|
|
|
|
|
|
lengths = torch.diff(split_points) |
|
|
|
|
|
all_lengths.append(lengths) |
|
|
|
|
|
return all_lengths |
|
|
|
|
|
|
|
|
def forward_add_noise_packed( |
|
|
inputs_ids: torch.Tensor, |
|
|
num_tokens_list: List[torch.Tensor], |
|
|
prompt_mask: torch.Tensor, |
|
|
mask_id: int, |
|
|
eps: float = 1e-3, |
|
|
max_tries: int = 10, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
为一批打包(packed)序列的 token ID 添加噪声。 |
|
|
|
|
|
此函数保留了为每个逻辑样本(在每个批次项内拼接)生成独立随机噪声率的逻辑。 |
|
|
它会随机将一部分 token 的 ID 替换为 mask_id。 |
|
|
这个过程会避开被 prompt_mask 标记的位置。 |
|
|
|
|
|
Args: |
|
|
inputs_ids (torch.Tensor): |
|
|
输入的 token ID 张量,形状为 (bsz, total_tokens)。 |
|
|
num_tokens_list (List[torch.Tensor]): |
|
|
一个张量列表,长度为 bsz。列表中的每个张量记录了对应批次项中 |
|
|
每个逻辑样本的长度。例如: [tensor([len1, len2]), tensor([len3, len4, len5])]. |
|
|
prompt_mask (torch.Tensor): |
|
|
布尔型张量,形状为 (bsz, total_tokens),值为 True 的位置表示是 prompt, |
|
|
不应添加噪声。 |
|
|
mask_id (int): |
|
|
用于替换的 mask token 的 ID。 |
|
|
eps (float): |
|
|
微小值,用于防止噪声率 t 恰好为 0,确保 p_mask > 0。 |
|
|
max_tries (int): |
|
|
为确保至少一个非 prompt token 被 mask,对每个批次项尝试的最大次数。 |
|
|
|
|
|
Returns: |
|
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
- noisy_input_ids (torch.Tensor): |
|
|
添加噪声后的 token ID 张量,形状为 (bsz, total_tokens)。 |
|
|
- final_masked_indices (torch.Tensor): |
|
|
布尔型张量,标记了哪些位置被实际 mask 了,形状为 (bsz, total_tokens)。 |
|
|
- p_masks (torch.Tensor): |
|
|
一个一维张量,包含了被 mask 的 token 对应的实际噪声率。 |
|
|
""" |
|
|
|
|
|
bsz, total_tokens = inputs_ids.shape |
|
|
device = inputs_ids.device |
|
|
|
|
|
|
|
|
assert len(num_tokens_list) == bsz, f"num_tokens_list 的长度 ({len(num_tokens_list)}) 必须等于 bsz ({bsz})" |
|
|
assert prompt_mask.shape == (bsz, total_tokens), f"prompt_mask 形状不匹配, 期望 {(bsz, total_tokens)}, 得到 {prompt_mask.shape}" |
|
|
|
|
|
|
|
|
noisy_ids_list = [] |
|
|
final_masked_indices_list = [] |
|
|
p_masks_per_token_list = [] |
|
|
|
|
|
|
|
|
|
|
|
for i in range(bsz): |
|
|
|
|
|
current_ids = inputs_ids[i:i+1] |
|
|
current_num_tokens = num_tokens_list[i] |
|
|
current_prompt_mask = prompt_mask[i:i+1] |
|
|
|
|
|
num_samples_in_item = len(current_num_tokens) |
|
|
|
|
|
assert total_tokens == torch.sum(current_num_tokens), \ |
|
|
f"批次项 {i} 的 num_tokens 之和 ({torch.sum(current_num_tokens)}) 与 total_tokens ({total_tokens}) 不匹配" |
|
|
|
|
|
eligible_for_masking = ~current_prompt_mask |
|
|
|
|
|
|
|
|
if not eligible_for_masking.any(): |
|
|
noisy_ids_list.append(current_ids) |
|
|
final_masked_indices_list.append(torch.zeros_like(current_prompt_mask, dtype=torch.bool)) |
|
|
|
|
|
p_masks_per_token_list.append(torch.full((1, total_tokens), eps, device=device, dtype=torch.float)) |
|
|
continue |
|
|
|
|
|
|
|
|
final_masked_indices_item = torch.zeros_like(current_prompt_mask, dtype=torch.bool) |
|
|
p_mask_per_token = None |
|
|
|
|
|
for _ in range(max_tries): |
|
|
|
|
|
t = torch.rand(num_samples_in_item, device=device) |
|
|
p_mask_per_sample = (1 - eps) * t + eps |
|
|
|
|
|
|
|
|
p_mask_per_token_1d = torch.repeat_interleave(p_mask_per_sample, current_num_tokens) |
|
|
p_mask_per_token = p_mask_per_token_1d.unsqueeze(0) |
|
|
|
|
|
|
|
|
masked_indices = torch.rand_like(p_mask_per_token) < p_mask_per_token |
|
|
|
|
|
final_masked_indices_item = masked_indices & eligible_for_masking |
|
|
|
|
|
|
|
|
if final_masked_indices_item.any(): |
|
|
break |
|
|
|
|
|
|
|
|
if not final_masked_indices_item.any(): |
|
|
eligible_indices = torch.nonzero(eligible_for_masking.squeeze(0), as_tuple=True)[0] |
|
|
if len(eligible_indices) > 0: |
|
|
|
|
|
random_choice = torch.randint(0, len(eligible_indices), (1,)).item() |
|
|
force_mask_idx = eligible_indices[random_choice] |
|
|
final_masked_indices_item[0, force_mask_idx] = True |
|
|
|
|
|
|
|
|
|
|
|
noisy_ids_item = torch.where( |
|
|
final_masked_indices_item, |
|
|
mask_id, |
|
|
current_ids |
|
|
) |
|
|
|
|
|
|
|
|
noisy_ids_list.append(noisy_ids_item) |
|
|
final_masked_indices_list.append(final_masked_indices_item) |
|
|
p_masks_per_token_list.append(p_mask_per_token) |
|
|
|
|
|
|
|
|
noisy_input_ids = torch.cat(noisy_ids_list, dim=0) |
|
|
final_masked_indices = torch.cat(final_masked_indices_list, dim=0) |
|
|
p_mask_full = torch.cat(p_masks_per_token_list, dim=0) |
|
|
|
|
|
|
|
|
p_masks = p_mask_full[final_masked_indices] |
|
|
|
|
|
return noisy_input_ids, final_masked_indices, p_masks |
|
|
|
|
|
|
|
|
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None): |
|
|
""" |
|
|
Constructs the specialized block diffusion attention mask for training |
|
|
composed of three masks: |
|
|
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks |
|
|
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context |
|
|
- **Block Causal Mask (M_BC)**: Attention to update x0 |
|
|
|
|
|
Args: |
|
|
b, h: Batch and head indices (ignored for mask logic). |
|
|
q_idx, kv_idx: Query and Key indices. |
|
|
seq_len: Total sequence length. |
|
|
block_size: Defines the block structure. |
|
|
|
|
|
Returns: |
|
|
A boolean attention mask. |
|
|
""" |
|
|
|
|
|
|
|
|
x0_flag_q = q_idx >= n |
|
|
x0_flag_kv = kv_idx >= n |
|
|
|
|
|
|
|
|
block_q = torch.where( |
|
|
x0_flag_q == 1, (q_idx - n) // block_size, q_idx // block_size |
|
|
) |
|
|
block_kv = torch.where( |
|
|
x0_flag_kv == 1, (kv_idx - n) // block_size, kv_idx // block_size |
|
|
) |
|
|
|
|
|
|
|
|
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv) |
|
|
|
|
|
|
|
|
offset_block_causal = (block_q > block_kv) & ( |
|
|
x0_flag_kv == 1) & (x0_flag_q == 0) |
|
|
|
|
|
|
|
|
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1) |
|
|
|
|
|
|
|
|
return block_diagonal | offset_block_causal | block_causal |
|
|
|
|
|
|
|
|
def block_attn_mask(num_tokens, block_size, device): |
|
|
masks = [] |
|
|
for i in range(len(num_tokens)): |
|
|
cur_masks = [] |
|
|
for num in num_tokens[i]: |
|
|
|
|
|
single_mask = block_diff_mask( |
|
|
b=None, |
|
|
h=None, |
|
|
q_idx=torch.arange(num * 2, device=device)[:, None], |
|
|
kv_idx=torch.arange(num * 2, device=device)[None, :], |
|
|
block_size=block_size, |
|
|
n=num, |
|
|
) |
|
|
cur_masks.append(single_mask) |
|
|
masks.append(torch.block_diag(*cur_masks)) |
|
|
masks = torch.stack(masks, dim=0) |
|
|
return masks |
|
|
|
|
|
|
|
|
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs") |
|
|
def fused_flex_attention(query, key, value, attention_mask, **kwargs): |
|
|
return flex_attention(query, key, value, block_mask=attention_mask, **kwargs) |
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class SDARRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
SDARRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
return flash_rms_norm( |
|
|
hidden_states, weight=self.weight, bias=None, eps=self.variance_epsilon) |
|
|
''' |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * \ |
|
|
torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
''' |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class SDARMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear( |
|
|
self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear( |
|
|
self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear( |
|
|
self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
if liger_kernel_is_available: |
|
|
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x))) |
|
|
else: |
|
|
down_proj = self.down_proj(self.act_fn( |
|
|
self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2:] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax( |
|
|
attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout( |
|
|
attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class SDARAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: SDARConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr( |
|
|
config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_attention_heads = config.num_attention_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
|
) |
|
|
|
|
|
self.q_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
|
|
self.k_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.sliding_window = config.sliding_window |
|
|
if not ( |
|
|
self.config.use_sliding_window |
|
|
and getattr(self.config, "sliding_window", None) is not None |
|
|
and self.layer_idx >= self.config.max_window_layers |
|
|
): |
|
|
self.sliding_window = None |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
bsz, q_len = input_shape |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm(self.q_proj( |
|
|
hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj( |
|
|
hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view( |
|
|
hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb( |
|
|
query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None and kwargs.get("store_kv", False): |
|
|
|
|
|
key_states, value_states = past_key_value.update( |
|
|
key_states, value_states, self.layer_idx) |
|
|
elif past_key_value is not None and not kwargs.get("store_kv", False) and len(past_key_value) > self.layer_idx: |
|
|
|
|
|
past_key_states, past_value_states = past_key_value[self.layer_idx] |
|
|
key_states = torch.cat( |
|
|
[past_key_states, key_states], dim=-2) |
|
|
value_states = torch.cat( |
|
|
[past_value_states, value_states], dim=-2) |
|
|
|
|
|
if self.training: |
|
|
attn_output, attn_weights = fused_flex_attention( |
|
|
query=query_states, |
|
|
key=key_states, |
|
|
value=value_states, |
|
|
attention_mask=attention_mask, |
|
|
enable_gqa=True, |
|
|
scale=self.scaling, |
|
|
return_lse=True |
|
|
) |
|
|
attn_weights = attn_weights.to( |
|
|
value_states.dtype) if attn_weights is not None else None |
|
|
attn_output = rearrange(attn_output, 'b h l d -> b l (h d)') |
|
|
else: |
|
|
attention_mask = attention_mask.bool() if attention_mask is not None else None |
|
|
attn_weights = None |
|
|
if torch.all(attention_mask): |
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
attn_output = flash_attn_func( |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
causal=False, |
|
|
softmax_scale=self.scaling |
|
|
) |
|
|
attn_output = rearrange(attn_output, 'b l h d -> b l (h d)') |
|
|
else: |
|
|
attn_output = F.scaled_dot_product_attention( |
|
|
query=query_states, |
|
|
key=key_states, |
|
|
value=value_states, |
|
|
attn_mask=attention_mask, |
|
|
is_causal=False, |
|
|
scale=self.scaling, |
|
|
enable_gqa=True |
|
|
) |
|
|
attn_output = rearrange(attn_output, 'b h l d -> b l (h d)') |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class SDARDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: SDARConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.self_attn = SDARAttention(config=config, layer_idx=layer_idx) |
|
|
self.mlp = SDARMLP(config) |
|
|
self.input_layernorm = SDARRMSNorm( |
|
|
config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = SDARRMSNorm( |
|
|
config.hidden_size, eps=config.rms_norm_eps) |
|
|
if ( |
|
|
config.sliding_window and config._attn_implementation != "flash_attention_2" |
|
|
): |
|
|
logger.warning_once( |
|
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
|
"unexpected results may be encountered." |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
store_kv: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
|
|
position_embeddings: Optional[Tuple[torch.Tensor, |
|
|
torch.Tensor]] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
store_kv=store_kv, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class SDARPreTrainedModel(PreTrainedModel): |
|
|
config_class = SDARConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["SDARDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
elif isinstance(module, SDARRMSNorm): |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
class SDARRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: SDARConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get( |
|
|
"rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn( |
|
|
self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
|
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand( |
|
|
position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance( |
|
|
x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ |
|
|
position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class SDARModel(SDARPreTrainedModel): |
|
|
def __init__(self, config: SDARConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding( |
|
|
config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[SDARDecoderLayer(config, layer_idx) |
|
|
for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = SDARRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = SDARRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
store_kv: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError( |
|
|
"You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
|
raise ValueError( |
|
|
"The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length( |
|
|
) if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
store_kv=store_kv, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Cache, |
|
|
output_attentions: bool = False, |
|
|
): |
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and past_key_values is not None: |
|
|
is_padding_right = attention_mask[:, - |
|
|
1].sum().item() != input_tensor.size()[0] |
|
|
if is_padding_right: |
|
|
raise ValueError( |
|
|
"You are attempting to perform batched generation with padding_side='right'" |
|
|
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to " |
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
|
) |
|
|
if attention_mask is not None and 0.0 in attention_mask: |
|
|
return attention_mask |
|
|
return None |
|
|
if self.config._attn_implementation == "flex_attention": |
|
|
if isinstance(attention_mask, torch.Tensor): |
|
|
seq_len_q, seq_len_kv = attention_mask.shape |
|
|
assert seq_len_q == seq_len_kv, f"got {attention_mask.shape=}" |
|
|
attention_mask = create_block_mask( |
|
|
|
|
|
lambda b, h, q_idx, kv_idx: attention_mask[q_idx, kv_idx], |
|
|
B=None, H=None, Q_LEN=seq_len_q, KV_LEN=seq_len_kv, |
|
|
) |
|
|
else: |
|
|
|
|
|
assert isinstance(attention_mask, BlockMask) |
|
|
return attention_mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length( |
|
|
) if past_key_values is not None else 0 |
|
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
using_sliding_window_cache = isinstance( |
|
|
past_key_values, SlidingWindowCache) |
|
|
|
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and not (using_static_cache or using_sliding_window_cache) |
|
|
and not output_attentions |
|
|
): |
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
|
attention_mask, |
|
|
inputs_embeds=input_tensor, |
|
|
past_key_values_length=past_seen_tokens, |
|
|
sliding_window=self.config.sliding_window, |
|
|
is_training=self.training, |
|
|
): |
|
|
return None |
|
|
|
|
|
dtype = input_tensor.dtype |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
sequence_length = input_tensor.shape[1] |
|
|
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
|
|
else: |
|
|
target_length = ( |
|
|
attention_mask.shape[-1] |
|
|
if isinstance(attention_mask, torch.Tensor) |
|
|
else past_seen_tokens + sequence_length + 1 |
|
|
) |
|
|
|
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask, |
|
|
sequence_length=sequence_length, |
|
|
target_length=target_length, |
|
|
dtype=dtype, |
|
|
cache_position=cache_position, |
|
|
batch_size=input_tensor.shape[0], |
|
|
config=self.config, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and attention_mask is not None |
|
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
|
and not output_attentions |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended( |
|
|
causal_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask: torch.Tensor, |
|
|
sequence_length: int, |
|
|
target_length: int, |
|
|
dtype: torch.dtype, |
|
|
cache_position: torch.Tensor, |
|
|
batch_size: int, |
|
|
config: SDARConfig, |
|
|
past_key_values: Cache, |
|
|
): |
|
|
""" |
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
|
|
Args: |
|
|
attention_mask (`torch.Tensor`): |
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
|
sequence_length (`int`): |
|
|
The sequence length being processed. |
|
|
target_length (`int`): |
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
|
dtype (`torch.dtype`): |
|
|
The dtype to use for the 4D attention mask. |
|
|
cache_position (`torch.Tensor`): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
batch_size (`torch.Tensor`): |
|
|
Batch size. |
|
|
config (`SDARConfig`): |
|
|
The model's configuration class |
|
|
past_key_values (`Cache`): |
|
|
The cache class that is being used currently to generate |
|
|
""" |
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
|
|
causal_mask = attention_mask |
|
|
else: |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = torch.full( |
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
|
) |
|
|
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape( |
|
|
-1, 1 |
|
|
) |
|
|
text_config = config.get_text_config() |
|
|
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None: |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
|
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= ( |
|
|
cache_position.reshape(-1, 1) - |
|
|
text_config.sliding_window |
|
|
) |
|
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
|
causal_mask *= diagonal_attend_mask |
|
|
causal_mask = causal_mask[None, None, |
|
|
:, :].expand(batch_size, 1, -1, -1) |
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
if attention_mask.shape[-1] > target_length: |
|
|
attention_mask = attention_mask[:, :target_length] |
|
|
mask_length = attention_mask.shape[-1] |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
|
causal_mask.device |
|
|
) |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
|
padding_mask, min_dtype |
|
|
) |
|
|
return causal_mask |
|
|
|
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): |
|
|
... |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class SDARForCausalLM(SDARPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = SDARModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear( |
|
|
config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
def prepare_for_bd_training(self, inputs_ids, position_ids, prompt_mask, masked_indices=None, p_mask_input=None): |
|
|
bsz, seq_len = inputs_ids.shape |
|
|
num_tokens = calculate_token_nums(position_ids) |
|
|
|
|
|
|
|
|
if masked_indices is not None: |
|
|
|
|
|
|
|
|
noisy_inputs_ids = torch.where(masked_indices, self.config.mask_token_id, inputs_ids) |
|
|
logits_to_keep_half = masked_indices |
|
|
|
|
|
|
|
|
M = masked_indices.sum().item() |
|
|
p_mask = torch.full((M,), 0.5, device=inputs_ids.device, dtype=torch.float) |
|
|
else: |
|
|
|
|
|
|
|
|
noisy_inputs_ids, logits_to_keep_half, p_mask = forward_add_noise_packed( |
|
|
inputs_ids=inputs_ids, |
|
|
num_tokens_list=num_tokens, |
|
|
prompt_mask=prompt_mask, |
|
|
mask_id=self.config.mask_token_id, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert logits_to_keep_half.shape == (bsz, seq_len), f"logits_to_keep_half shape error: {logits_to_keep_half.shape}" |
|
|
assert p_mask.shape == (logits_to_keep_half.sum(),), f"p_mask shape error: {p_mask.shape}, expected ({logits_to_keep_half.sum()},)" |
|
|
|
|
|
|
|
|
|
|
|
p_to_keep = None |
|
|
if p_mask_input is not None: |
|
|
|
|
|
|
|
|
|
|
|
p_to_keep = p_mask_input[logits_to_keep_half] |
|
|
|
|
|
router_noisy_part_list = [] |
|
|
for i in range(bsz): |
|
|
cur_router_noisy_part = (torch.arange(num_tokens[i].shape[0] *2) % 2 == 0).to(inputs_ids.device) |
|
|
cur_router_noisy_part = cur_router_noisy_part.repeat_interleave(num_tokens[i].repeat_interleave(2)) |
|
|
router_noisy_part_list.append(cur_router_noisy_part) |
|
|
router_noisy_part = torch.stack(router_noisy_part_list, dim=0) |
|
|
|
|
|
|
|
|
concat_inputs_ids = inputs_ids.repeat(1, 2) |
|
|
|
|
|
logits_to_keep = torch.zeros( |
|
|
bsz, 2 * seq_len, dtype=torch.bool, device=inputs_ids.device) |
|
|
|
|
|
concat_position_ids = torch.zeros( |
|
|
bsz, 2 * seq_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
for i in range(bsz): |
|
|
concat_inputs_ids[i][router_noisy_part[i]] = noisy_inputs_ids[i] |
|
|
concat_inputs_ids[i][~router_noisy_part[i]] = inputs_ids[i] |
|
|
|
|
|
logits_to_keep[i][router_noisy_part[i]] = logits_to_keep_half[i] |
|
|
|
|
|
concat_position_ids[i][router_noisy_part[i]] = position_ids[i] |
|
|
concat_position_ids[i][~router_noisy_part[i]] = position_ids[i] |
|
|
|
|
|
|
|
|
attention_mask = block_attn_mask(num_tokens, self.config.block_size, inputs_ids.device) |
|
|
flex_attention_mask_3d = create_block_mask( |
|
|
lambda b, h, q_idx, kv_idx: attention_mask[b, q_idx, kv_idx], |
|
|
B=attention_mask.size(0), H=None, |
|
|
Q_LEN=attention_mask.size(1), KV_LEN=attention_mask.size(2), |
|
|
) |
|
|
|
|
|
return concat_inputs_ids, concat_position_ids, flex_attention_mask_3d, logits_to_keep_half, logits_to_keep, p_mask, p_to_keep |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
masked_indices: Optional[torch.Tensor] = None, |
|
|
return_logits: bool = False, |
|
|
|
|
|
compute_rl_loss: bool = False, |
|
|
p_mask: Optional[torch.Tensor] = None, |
|
|
adv: Optional[torch.Tensor] = None, |
|
|
adv_optimization: bool = False, |
|
|
logp_old_tok: Optional[torch.Tensor] = None, |
|
|
logp_ref_tok: Optional[torch.Tensor] = None, |
|
|
is_real: Optional[torch.Tensor] = None, |
|
|
ppo_eps: float = 0.2, |
|
|
kl_beta: float = 0.0, |
|
|
use_kl_estimator_k3: bool = True, |
|
|
return_entropy: bool = False, |
|
|
dynamic_threshold: Optional[float] = None, |
|
|
loss_mean: bool = True, |
|
|
**kwargs: Unpack[KwargsForCausalLM], |
|
|
) -> CausalLMOutputWithPast: |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
|
|
|
if self.training: |
|
|
assert inputs_embeds is None, "only support input_ids during training" |
|
|
|
|
|
prompt_mask = (labels == -100) if labels is not None else None |
|
|
position_ids = modify_padded_position_ids_2d(position_ids) |
|
|
|
|
|
( |
|
|
concat_inputs_ids, |
|
|
concat_position_ids, |
|
|
flex_attention_mask_3d, |
|
|
logits_to_keep_half, |
|
|
logits_to_keep, |
|
|
p_mask_out, |
|
|
p_to_keep, |
|
|
) = self.prepare_for_bd_training( |
|
|
input_ids, position_ids, prompt_mask, masked_indices, p_mask_input=p_mask |
|
|
) |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=concat_inputs_ids, |
|
|
attention_mask=flex_attention_mask_3d, |
|
|
position_ids=concat_position_ids, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
hidden_states = hidden_states[logits_to_keep].contiguous() |
|
|
|
|
|
|
|
|
entropy = torch.tensor(0.0, device=input_ids.device) |
|
|
|
|
|
|
|
|
if compute_rl_loss: |
|
|
assert p_to_keep is not None, "p_mask must be provided for RL loss computation." |
|
|
assert adv is not None, "adv must be provided for RL loss computation." |
|
|
assert is_real is not None, "is_real must be provided for RL loss computation." |
|
|
assert labels is not None, "labels must be provided for RL loss computation." |
|
|
assert masked_indices is not None, "masked_indices must be provided for RL loss computation." |
|
|
|
|
|
device = input_ids.device |
|
|
|
|
|
|
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
|
|
|
is_real_tensor = ( |
|
|
is_real.to(device=device, dtype=torch.bool) |
|
|
if torch.is_tensor(is_real) |
|
|
else torch.tensor(is_real, dtype=torch.bool, device=device) |
|
|
) |
|
|
p_mask_real = p_mask & is_real_tensor.unsqueeze(1) |
|
|
p_to_keep_real = p_mask_real[masked_indices] |
|
|
|
|
|
|
|
|
logits_p = logits[p_to_keep_real] |
|
|
N = p_to_keep_real.sum().item() |
|
|
total_response_tokens = (labels != -100).sum().item() |
|
|
total_p_mask = p_mask.sum().item() |
|
|
total_masked_indices = masked_indices.sum().item() |
|
|
total_is_real = is_real_tensor.sum().item() if is_real_tensor.dim() > 0 else (1 if is_real_tensor.item() else 0) |
|
|
|
|
|
|
|
|
|
|
|
log_probs_p = torch.nn.functional.log_softmax(logits_p, dim=-1) |
|
|
|
|
|
|
|
|
labels_p = labels[masked_indices][p_to_keep_real] |
|
|
logp_p = log_probs_p.gather(dim=-1, index=labels_p.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
|
|
|
if return_entropy: |
|
|
with torch.no_grad(): |
|
|
entropy_p = -(log_probs_p.exp() * log_probs_p).sum(dim=-1) |
|
|
entropy = entropy_p.mean() if entropy_p.numel() > 0 else torch.tensor(0.0, device=device) |
|
|
del entropy_p |
|
|
|
|
|
|
|
|
adv_tensor = adv.to(device) if torch.is_tensor(adv) else torch.tensor(adv, dtype=torch.float, device=device) |
|
|
adv_optimization=False |
|
|
if adv_optimization: |
|
|
|
|
|
response_mask = (labels != -100) |
|
|
bsz, seq_len = input_ids.shape |
|
|
|
|
|
|
|
|
response_starts = torch.full((bsz,), seq_len, dtype=torch.long, device=device) |
|
|
for b in range(bsz): |
|
|
if response_mask[b].any(): |
|
|
response_starts[b] = response_mask[b].long().argmax() |
|
|
|
|
|
|
|
|
max_adv_value = adv_tensor.max() |
|
|
is_max_adv = (adv_tensor == max_adv_value) |
|
|
|
|
|
|
|
|
optimized_adv = torch.zeros_like(labels, dtype=adv_tensor.dtype) |
|
|
|
|
|
|
|
|
for b in range(bsz): |
|
|
if is_max_adv[b]: |
|
|
optimized_adv[b][response_mask[b]] = max_adv_value |
|
|
|
|
|
|
|
|
total_response_tokens = 0 |
|
|
updated_tokens = 0 |
|
|
skipped_tokens = 0 |
|
|
original_adv_sum = 0.0 |
|
|
optimized_adv_sum = 0.0 |
|
|
|
|
|
|
|
|
for pos in range(seq_len): |
|
|
valid_samples = response_mask[:, pos] |
|
|
if not valid_samples.any(): |
|
|
continue |
|
|
|
|
|
|
|
|
valid_samples = valid_samples & ~is_max_adv |
|
|
if not valid_samples.any(): |
|
|
|
|
|
max_count = (response_mask[:, pos] & is_max_adv).sum().item() |
|
|
total_response_tokens += max_count |
|
|
skipped_tokens += max_count |
|
|
original_adv_sum += max_adv_value.item() * max_count |
|
|
optimized_adv_sum += max_adv_value.item() * max_count |
|
|
continue |
|
|
|
|
|
|
|
|
valid_indices = valid_samples.nonzero(as_tuple=True)[0] |
|
|
|
|
|
for b in valid_indices: |
|
|
b_item = b.item() |
|
|
response_start = response_starts[b_item].item() |
|
|
prefix_len = pos + 1 - response_start |
|
|
|
|
|
if prefix_len <= 0: |
|
|
optimized_adv[b_item, pos] = adv_tensor[b_item] |
|
|
continue |
|
|
|
|
|
|
|
|
same_start_mask = (response_starts == response_start) & response_mask[:, pos] |
|
|
same_start_indices = same_start_mask.nonzero(as_tuple=True)[0] |
|
|
|
|
|
if len(same_start_indices) == 1: |
|
|
|
|
|
optimized_adv[b_item, pos] = adv_tensor[b_item] |
|
|
total_response_tokens += 1 |
|
|
original_adv_sum += adv_tensor[b_item].item() |
|
|
optimized_adv_sum += adv_tensor[b_item].item() |
|
|
continue |
|
|
|
|
|
|
|
|
has_max_in_candidates = (same_start_mask & is_max_adv).any() |
|
|
|
|
|
prefix_end = pos + 1 |
|
|
current_prefix = input_ids[b_item, response_start:prefix_end] |
|
|
|
|
|
|
|
|
prefixes = input_ids[same_start_indices, response_start:prefix_end] |
|
|
|
|
|
|
|
|
matches = (prefixes == current_prefix.unsqueeze(0)).all(dim=1) |
|
|
|
|
|
|
|
|
matching_indices = same_start_indices[matches] |
|
|
|
|
|
|
|
|
original_adv_value = adv_tensor[b_item].item() |
|
|
if matching_indices.numel() > 0: |
|
|
|
|
|
if has_max_in_candidates and is_max_adv[matching_indices].any(): |
|
|
max_adv = max_adv_value |
|
|
else: |
|
|
max_adv = adv_tensor[matching_indices].max() |
|
|
|
|
|
optimized_adv[b_item, pos] = max_adv |
|
|
|
|
|
if abs(max_adv.item() - original_adv_value) > 1e-6: |
|
|
updated_tokens += 1 |
|
|
original_adv_sum += original_adv_value |
|
|
optimized_adv_sum += max_adv.item() |
|
|
else: |
|
|
optimized_adv[b_item, pos] = adv_tensor[b_item] |
|
|
original_adv_sum += original_adv_value |
|
|
optimized_adv_sum += original_adv_value |
|
|
|
|
|
total_response_tokens += 1 |
|
|
|
|
|
|
|
|
if total_response_tokens > 0: |
|
|
update_ratio = updated_tokens / total_response_tokens |
|
|
skip_ratio = skipped_tokens / total_response_tokens |
|
|
avg_original = original_adv_sum / total_response_tokens |
|
|
avg_optimized = optimized_adv_sum / total_response_tokens |
|
|
print(f"[Adv Optimization] Total: {total_response_tokens}, " |
|
|
f"Updated: {updated_tokens} ({update_ratio:.2%}), " |
|
|
f"Skipped: {skipped_tokens} ({skip_ratio:.2%}), " |
|
|
f"Avg adv: {avg_original:.4f} -> {avg_optimized:.4f} " |
|
|
f"(+{avg_optimized - avg_original:.4f})") |
|
|
|
|
|
|
|
|
adv_expanded = optimized_adv |
|
|
else: |
|
|
|
|
|
adv_expanded = adv_tensor.unsqueeze(1).expand_as(p_mask) |
|
|
|
|
|
adv_p = adv_expanded[masked_indices][p_to_keep_real] |
|
|
|
|
|
|
|
|
if logp_old_tok is not None and logp_old_tok.numel() > 0: |
|
|
logp_old_p = logp_old_tok.to(device)[masked_indices][p_to_keep_real] |
|
|
else: |
|
|
logp_old_p = logp_p.detach() |
|
|
|
|
|
|
|
|
ratio_p = (logp_p - logp_old_p).clamp(-10.0, 10.0).exp() |
|
|
clipped = ratio_p.clamp(1 - ppo_eps, 1 + ppo_eps+0.08) |
|
|
surrogate_p = torch.minimum(ratio_p * adv_p, clipped * adv_p) |
|
|
|
|
|
|
|
|
furthest_value = ratio_p[torch.abs(ratio_p - 1).argmax()] |
|
|
|
|
|
|
|
|
|
|
|
num_masked = masked_indices.sum().item() |
|
|
num_loss_elements = surrogate_p.numel() |
|
|
print(f"masked_indices.sum()={num_masked}, surrogate_p.numel()={num_loss_elements}") |
|
|
if loss_mean: |
|
|
policy_loss = -surrogate_p.mean() |
|
|
else: |
|
|
policy_loss = -surrogate_p.sum() |
|
|
|
|
|
|
|
|
kl_loss = torch.tensor(0.0, device=device) |
|
|
if kl_beta > 0 and logp_ref_tok is not None: |
|
|
logp_ref_p = logp_ref_tok.to(device)[masked_indices][p_to_keep_real] |
|
|
kl_seq_p = logp_p - logp_ref_p |
|
|
|
|
|
if use_kl_estimator_k3: |
|
|
kl_seq_p = (-kl_seq_p).clamp(-10.0, 10.0).exp() - 1.0 + kl_seq_p |
|
|
|
|
|
|
|
|
if loss_mean: |
|
|
kl_loss = kl_beta * kl_seq_p.mean() |
|
|
else: |
|
|
kl_loss = kl_beta * kl_seq_p.sum() |
|
|
del logp_ref_p, kl_seq_p |
|
|
|
|
|
loss = policy_loss + kl_loss |
|
|
kl_loss_value = kl_loss.detach().clone() |
|
|
|
|
|
|
|
|
del logits, logits_p, log_probs_p, labels_p |
|
|
del is_real_tensor, p_mask_real, p_to_keep_real |
|
|
del adv_tensor, adv_expanded, adv_p |
|
|
del logp_p, logp_old_p, ratio_p, clipped, surrogate_p |
|
|
del policy_loss, kl_loss |
|
|
|
|
|
logits = None |
|
|
|
|
|
|
|
|
elif return_logits: |
|
|
logits = self.lm_head(hidden_states) |
|
|
loss = None |
|
|
|
|
|
|
|
|
else: |
|
|
assert labels is not None, "Labels must be provided for training." |
|
|
answer_len = (labels != -100).sum() |
|
|
loss_fct = FusedLinearDiffusionCrossEntropyLoss(reduction="sum") |
|
|
loss = loss_fct( |
|
|
x=hidden_states, |
|
|
target=labels[logits_to_keep_half].contiguous(), |
|
|
weight=self.lm_head.weight, |
|
|
bias=self.lm_head.bias, |
|
|
p_mask=p_mask_out, |
|
|
) |
|
|
loss = loss / answer_len |
|
|
logits = None |
|
|
|
|
|
|
|
|
else: |
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
hidden_states = hidden_states[:, slice_indices, :].contiguous() |
|
|
|
|
|
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training |
|
|
if fuse_linear_and_cross_entropy: |
|
|
logits = None |
|
|
else: |
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
|
|
output = CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
if self.training and compute_rl_loss: |
|
|
output.entropy = entropy |
|
|
output.kl_loss = kl_loss_value if "kl_loss_value" in locals() else torch.tensor(0.0, device=input_ids.device) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"SDARForCausalLM", |
|
|
"SDARModel", |
|
|
"SDARPreTrainedModel", |
|
|
] |