HGU_rulebook-Llama3.2-Bllossom-5B_fine-tuning-QLoRA-8_32_4
This model is a fine-tuned version of Bllossom/llama-3.2-Korean-Bllossom-AICA-5B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 5.6787
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1256
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 6.8664 | 0.3946 | 62 | 6.3467 |
| 5.7104 | 0.7892 | 124 | 5.7018 |
| 5.6856 | 1.1838 | 186 | 5.6870 |
| 5.6807 | 1.5784 | 248 | 5.6836 |
| 5.6836 | 1.9730 | 310 | 5.6826 |
| 5.6797 | 2.3675 | 372 | 5.6812 |
| 5.6777 | 2.7621 | 434 | 5.6804 |
| 5.6783 | 3.1567 | 496 | 5.6804 |
| 5.6758 | 3.5513 | 558 | 5.6794 |
| 5.6759 | 3.9459 | 620 | 5.6793 |
| 5.675 | 4.3405 | 682 | 5.6794 |
| 5.676 | 4.7351 | 744 | 5.6788 |
| 5.6721 | 5.1297 | 806 | 5.6789 |
| 5.6737 | 5.5243 | 868 | 5.6787 |
| 5.6719 | 5.9189 | 930 | 5.6785 |
| 5.6751 | 6.3134 | 992 | 5.6786 |
| 5.6698 | 6.7080 | 1054 | 5.6787 |
| 5.6709 | 7.1026 | 1116 | 5.6787 |
| 5.6742 | 7.4972 | 1178 | 5.6787 |
| 5.6721 | 7.8918 | 1240 | 5.6787 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.2
- Pytorch 2.0.1+cu118
- Datasets 3.0.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for TARARARAK/HGU_rulebook-Llama3.2-Bllossom-5B_fine-tuning-QLoRA-8_32_4
Base model
Bllossom/llama-3.2-Korean-Bllossom-AICA-5B