Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("arad1367/technographics-marketing-matryoshka")
# Run inference
sentences = [
'How important is it to update technographic data frequently?',
'It is crucial. Technology trends and usage patterns evolve quickly. Keeping your technographic data up-to-date ensures that your marketing strategies remain relevant and effective.',
"By analyzing a competitor's technology stack, marketers can gain insights into their strategies, tools, and platforms. This knowledge can help them identify gaps in their own stack, adopt superior technologies, or find ways to differentiate their approach.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
dim_768, dim_512, dim_256, dim_128 and dim_64InformationRetrievalEvaluator| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
| cosine_accuracy@3 | 0.5051 | 0.5152 | 0.4848 | 0.4747 | 0.4848 |
| cosine_accuracy@5 | 0.5758 | 0.5758 | 0.5859 | 0.5758 | 0.5354 |
| cosine_accuracy@10 | 0.7576 | 0.7273 | 0.7071 | 0.6869 | 0.6869 |
| cosine_precision@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
| cosine_precision@3 | 0.1684 | 0.1717 | 0.1616 | 0.1582 | 0.1616 |
| cosine_precision@5 | 0.1152 | 0.1152 | 0.1172 | 0.1152 | 0.1071 |
| cosine_precision@10 | 0.0758 | 0.0727 | 0.0707 | 0.0687 | 0.0687 |
| cosine_recall@1 | 0.3737 | 0.3737 | 0.3535 | 0.3737 | 0.3434 |
| cosine_recall@3 | 0.5051 | 0.5152 | 0.4848 | 0.4747 | 0.4848 |
| cosine_recall@5 | 0.5758 | 0.5758 | 0.5859 | 0.5758 | 0.5354 |
| cosine_recall@10 | 0.7576 | 0.7273 | 0.7071 | 0.6869 | 0.6869 |
| cosine_ndcg@10 | 0.5323 | 0.528 | 0.5102 | 0.5097 | 0.4979 |
| cosine_mrr@10 | 0.4647 | 0.4673 | 0.4497 | 0.4554 | 0.4404 |
| cosine_map@100 | 0.4772 | 0.4818 | 0.4655 | 0.4714 | 0.4557 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
What role does customer segmentation play in predictive analytics? |
Customer segmentation within predictive analytics allows marketers to group customers based on similar characteristics. This helps in creating more targeted marketing strategies and predicting behavior patterns for each segment, improving overall campaign effectiveness. |
How has technographics evolved over the years to accommodate the digital space? |
Initially focused on hardware and software usage, technographics has evolved to consider digital platforms and tools. It now investigates consumer behavior across different channels, devices, and even social media platforms to provide a more comprehensive consumer profile. |
Can you name some common methods of collecting technographic data? |
Some common methods include surveys, interviews, online browsing behavior tracking, and direct observation. In addition, databases can be bought from vendors specializing in technographic data collection. |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 16gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 10lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|---|
| 1.0 | 1 | - | 0.4650 | 0.4667 | 0.4712 | 0.4371 | 0.4151 |
| 2.0 | 3 | - | 0.5316 | 0.5307 | 0.5051 | 0.4810 | 0.4407 |
| 3.0 | 5 | - | 0.5256 | 0.5222 | 0.5136 | 0.5104 | 0.4742 |
| 4.0 | 7 | - | 0.5316 | 0.5269 | 0.5120 | 0.5083 | 0.4790 |
| 5.0 | 9 | - | 0.5337 | 0.5280 | 0.5102 | 0.5101 | 0.4983 |
| 6.0 | 10 | 2.9453 | 0.5323 | 0.5280 | 0.5102 | 0.5097 | 0.4979 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
BAAI/bge-base-en-v1.5